This document is created with the unregistered version of CHM2PDF Pilot

ke
Mastering
Perl for
Bioinformatics

Table of Contents
Index
Reviews
Reader Reviews
Errata
Mastering Per| for Bioinformatics
By James Tisdd|

TART READIMG

Publisher: ORelly

Pub Date: September 2003
ISBN: 0-596-00307-2
Pages: 396

Magtering Perl for Bioinformatics coversthe core Perl language and many of its module extensions, presenting them
in the context of biologica dataand problems of pressing interest to the biological community. This book, dong with
Beginning Perl for Bioinformatics, formsabasic coursein Perl programming. This second volume finishesthe basic
Perl tutorial materiad (references, complex data structures, object-oriented programming, use of modules--al
presented in abiological context) and presents some advanced topics of considerable interest in bioinformatics.

[TeamLiB]

http://www.oreilly.com/catalog/mperlbio/reviews.html
http://www.oreilly.com/cgi-bin/reviews@bookident=mperlbio
http://www.oreilly.com/catalog/mperlbio/errata/default.htm
http://www.oreillynet.com/cs/catalog/view/au/617@x-t=book.view

This document is created with the unregistered version of CHM2PDF Pilot

=y
-_'».:'-.._._
1
4|
"

o b+ 3
Mastering

Perl for =
Bioinformatics

Table of Contents
Index
Reviews
Reader Reviews
Errata
Mastering Per| for Bioinformatics
By James Tisdd|

ZTART READIM G

Publisher: ORelly

Pub Date: September 2003
ISBN: 0-596-00307-2
Pages: 396

Copyright

Foreword

Preface
About This Book
What Y ou Need to Know to Use This Book
Organization of This Book
Conventions Used in This Book
Comments and Questions
Acknowledgments

Part |: Object-Oriented Programming in Perl
Chapter 1. Modular Programming with Perl

Section 1.1. What IsaModule?
Section 1.2. Why Perl Modules?
Section 1.3. Namespaces
Section 1.4. Packages
Section 1.5. Defining Modules
Section 1.6. Storing Modules
Section 1.7. Writing Y our First Perl Module
Section 1.8. Using Modules
Section 1.9. CPAN Modules
Section 1.10. Exercises

Chapter 2. Data Structures and String Algorithms
Section 2.1. Basic Perl Data Types
Section 2.2. References
Section 2.3. Matrices

http://www.oreilly.com/catalog/mperlbio/reviews.html
http://www.oreilly.com/cgi-bin/reviews@bookident=mperlbio
http://www.oreilly.com/catalog/mperlbio/errata/default.htm
http://www.oreillynet.com/cs/catalog/view/au/617@x-t=book.view

This document is created with the unregistered version of CHM2PDF Pilot

Section 2.4. Complex Data Structures
Section 2.5. Printing Complex Data Structures
Section 2.6. Data Structuresin Action

Section 2.7. Dynamic Programming

Section 2.8. Approximate String Matching
Section 2.9. Resources

Section 2.10. Exercises

Chapter 3. Object-Oriented Programming in Perl
Section 3.1. What |'s Object-Oriented Programming?
Section 3.2. Using Perl Classes (Without Writing Them)
Section 3.3. Objects, Methods, and Classesin Perl
Section 3.4. Arrow Notation (->)
Section 3.5. Genel: An Example of aPerl Class
Section 3.6. Details of the Genel Class
Section 3.7. Gene2.pm: A Second Example of a Perl Class
Section 3.8. Gene3.pm: A Third Example of a Perl Class
Section 3.9. How AUTOLOAD Works
Section 3.10. Cleaning Up Unused Objects with DESTROY
Section 3.11. Gene.pm: A Fourth Example of a Perl Class
Section 3.12. How to Document a Perl Classwith POD
Section 3.13. Additional Topics
Section 3.14. Resources
Section 3.15. Exercises

Chapter 4. Sequence Formats and Inheritance
Section4.1. Inheritance
Section 4.2. FilelO.pm: A Classto Read and Write Files
Section 4.3. SegFilelO.pm: Sequence File Formats
Section 4.4. Resources
Section 4.5. Exercises

Chapter 5. A Classfor Redtriction Enzymes
Section 5.1. Envisoning an Object
Section 5.2. Rebasepm: A ClassModule
Section 5.3. Redtriction.pm: Finding Recognition Sites
Section 5.4. Drawing Redtriction Maps
Section 5.5. Resources
Section 5.6. Exercises

Pat |1: Perl and Bioinformatics
Chapter 6. Perl and Relational Databases

Section 6.1. One Perl, Many Databases
Section 6.2. Popular Relational Databases
Section 6.3. Relational Database Definitions
Section 6.4. Structured Query Language
Section 6.5. Administering Y our Database
Section 6.6. Relationa Database Design
Section 6.7. Perl DBI and DBD Interface Modules
Section 6.8. A Rebase Database | mplementation
Section 6.9. Additiond Topics
Section 6.10. Resources
Section 6.11. Exercises

Chapter 7. Perl and the Web

This document is created with the unregistered version of CHM2PDF Pilot

Section 7.1. How the Web Works

Section 7.2. Web Servers and Browsers

Section 7.3. The Common Gateway Interface
Section 7.4. Rebase: Building Dynamic Web Pages
Section 7.5. Exercises

Chapter 8. Perl and Graphics
Section 8.1. Computer Graphics
Section8.2. GD
Section 8.3. Adding GD Graphicsto Restrictionmap.pm
Section 8.4. Making Graphs
Section 8.5. Resources
Section 8.6. Exercises

Chapter 9. Introduction to Bioperl
Section 9.1. The Growth of Bioperl
Section 9.2. Ingdling Bioper!
Section 9.3. Tedting Bioperl
Section 9.4. Bioperl Problems
Section 9.5. Overview of Objects
Section 9.6. bptutorid.pl
Section 9.7. bptutorial.pl: sequence manipulation Demo
Section 9.8. Using Bioperl Modules

Pat lll: Appendixes

Appendix A. Perl Summary
Section A.1. Command Interpretation
Section A.2. Comments
Section A.3. Scdar Vauesand Scdar Variables
Section A.4. Assgnment
Section A.5. Statements and Blocks
Section A.6. Arrays
Section A.7. Hashes
Section A.8. Complex Data Structures
Section A.9. Operators
Section A.10. Operator Precedence
Section A.11. Basic Operators
Section A.12. Conditiondsand Logical Operators
Section A.13. Binding Operators
Section A.14. Loops
Section A.15. Input/Output
Section A.16. Regular Expressions
Section A.17. Scaar and List Context
Section A.18. Subroutines
Section A.19. Modules and Packages
Section A.20. Object-Oriented Programming
Section A.21. Built-in Functions

Appendix B. Ingaling Perl
Section B.1. Ingaling Perl on 'Y our Computer
Section B.2. Versions of Perl
Section B.3. Internet Access
Section B.4. Downloading
Section B.5. How to Run Perl Programs

This document is created with the unregistered version of CHM2PDF Pilot

Section B.6. Finding Help

Colophon
Index
[TeemLiB] [rrsviovs e]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Copyright

Copyright 2003 O'Rellly & Associates, Inc.

Printed in the United States of America

Published by O'Rellly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Rellly & Associates books may be purchased for educationd, business, or sales promotional use. Online editions
areaso avallable for most titles (http://ssfari.orellly.com). For more information, contact our corporate/ingtitutiona
sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook |ogo, and the O'Rellly logo are registered trademarks of O'Rellly &
Asociates, Inc. Many of the designations used by manufacturers and sellersto distinguish their products are claimed
astrademarks. Where those designations appear in thisbook, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initia caps. The association between the image of a
bullfrog and the topic of Perl isatrademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of thisbook, the publisher and authors assume no
repongbility for errors or omissions, or for damages resulting from the use of the information contained herein.

[TeamLiB]

http://safari.oreilly.com/default.htm
mailto:corporate@oreilly.com
http://safari.oreilly.com

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

Foreword

If you can't do bioinformatics, you can't do biology, and Perl isthe biologist's favorite language for doing
bioinformatics. The genomics revolution has so dtered the landscape of biology that dmost anyone who works at the
bench now spends much of histime a the computer aswell, browsing through the large online databases of genes,
proteins, interactions and published papers. For example, the availability of an (amost) complete catalog of al the
genesin human has fundamentaly changed how anyone involved in genetic research works. Traditiondly, abiologist
would spend days thinking out the strategy for identifying a gene and months working in the lab cloning and screening
to get hishands on it. Now he spends days thinking out the appropriate strategy for mining the gene from agenome
database, seconds executing the query, and another few minutes ordering the appropriate clone from the resource
center. The availability of genomes from many species and phylamakesit possible to gpply comparative genomics
techniquesto the problems of identifying functiondly significant portions of proteins or finding the genesresponsible
for agpecies or srainsdistinguishing traits.

Pardld revolutions are occurring in neurobiology, in which new imaging techniques alow functiona changesinthe
nervous systems of higher organismsto be observed in Stu; in clinical research, where the computer databaseis
rapidly replacing the paper chart; and even in botany, where herbariaare being digitized and catal oged for online
access.

Biology is undergoing asea change, evolving into an information-driven science in which the acquisition of large-scde
data setsfollowed by pattern recognition and data mining playsjust as prominent arole astraditiona hypothesis
testing. The two approaches are complementary: the patterns discovered in large-scale data sets suggest hypotheses
to test, while hypotheses can be tested directly on the data sets stored in online databases.

To take advantage of the new biology, biologists must be as comfortable with the computer asthey now are with
thermocyclers and electrophoresis units. Web-based access to biological databases and the various collections of
prepackaged data andysis tools are wonderful, but often they are not quite enough. To really make the most of the
information revolution in biology, biologists must be able to manage and andyze large amounts of data obtained from
many different sources. This meanswriting software. The ability to creste aPerl script to automate information
management is agreat advantage: whether the task is as Smple as checking a remote web page for updates or as
complex as knitting together alarge number of third-party software packagesinto an anaytic pipeline.

In hisfirgt bioinformatics book, Beginning Perl for Bioinformatics, Jm introduced the fundamentals of programming in
the language most widdly used in thefield. This book goesthe next step, showing how Perl can be used to create
large software projects that are scalable and reusable. If you are programming in Perl now and have experienced that
wave of panic when you go back to some code you wrote six months ago and can't understand how the code works,
then you know why you need thisbook. If you are an accomplished programmer who has heard about bioinformatics
and wantsto learn more, this book isaso for you. Findly, if you are abiologist who wantsto ride the crest of the
information wave rather than being washed undernesth it, then buy both this book aong with Beginning Perl for
Bioinformatics. | promise you won't be disappointed.

—Lincoln SteinCold Spring Harbor, NY September 2003

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Preface

The history of biologica research isfilled with examples of new laboratory techniqueswhich, at first, are suitable
topicsfor doctora theses but eventualy become so widdly useful and standard that they are learned by most
undergraduates. The use of computer programming in biology research is such anincreasingly standard skill for many
biologigts. Bioinformaticsis one of the most rapidly growing areas of biologica science. Fundamentdly, it'sa
cross-disciplinary study, combining the questions of computer science and programming with those of biologica
research.

As active sciences evolve, unifying principles and techniques developed in onefield are often found to be useful in
other areas. Asaresult, the established boundaries between disciplines are sometimes blurred, and the new
principles and techniques may result in new ways of seeing the science asawhole. For instance, molecular biology
has developed a set of techniques over the past 50 yearsthat has dso proved useful throughout much of biology in
generd. Similarly, the methods of bioinformatics are finding fertile ground in such fields as genetics, biochemistry,
molecular biology, evolutionary science, development, cell studies, clinica research, and field biology.

Inmy view, bioinformatics, which | define broadly asthe use of computersin biological research, isbecoming a
foundationa sciencefor abroad range of biologica studies. Just asit's now commonplaceto find ageneticist or a
field biologist using the techniques of molecular biology as aroutine part of her research, so can you frequently find
that same researcher applying the techniques of bioinformatics. Molecular biology and bioinformatics may not be the
researcher's main areas of interest, but the tools from molecular biology and bioinformatics have become standard in
searching for the answersto the questions of interest. The Perl programming language plays no smal part in that
search for answers.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

About This Book

Thisbook isacontinuation of my previous book, Beginning Perl for Bioinformatics (also by OReilly & Associates).
Asthetitleimplies, Magtering Perl for Bioinformatics moves you to amore advanced level of Perl programming in
bioinformatics. In thisvolume, | cover such topics as advanced data structures, object-oriented programming,
modules, relational databases, web programming, and more advanced algorithms. Themain god of thisbook isto
help you learn to write Perl programs that support your research in biology and enable you to adapt and use
programs written by others.

In the process of honing your programming skills, you will also learn the fundamentals of bioinformatics. For many
readers, the material presented in these two bookswill be sufficient to support their goasin the laboratory. However,
thisbook is not acomprehensive survey of bioinformatics techniques. Both Mastering Perl for Bioinformatics and
Beginning Perl for Bioinformatics emphasize the computer programming aspects of bioinformatics. Asaserious
student, you should expect to follow this groundwork with further study in the bioinformatics literature. Even the Pexl
programming language has more complexity than canfit in this cross-disciplinary text.

Readers dready familiar with basic Perl and the eements of DNA and proteins can use Mastering Perl for
Bioinformatics without reference to Beginning Perl for Bioinformatics. However, the two books together make a
complete course suitable for undergraduates, graduate students, and professona biologistswho need to learn
programming for biology research.

A companion web steat http://mww.oreilly.com/cata og/mperlbio includes al the program code in the book.

[TeamLiB]

http://www.oreilly.com/catalog/mperlbio
http://www.oreilly.com/catalog/mperlbio

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

What Y ou Need to Know to Use This Book

This book assumes that you have some experience with Perl, including aworking knowledge of writing, saving, and
running programs, basic Perl syntax; control structures such asloops and conditiond tests; the most common
operators such as addition, subtraction, and string concatenation; input and output from the user, files, and other
programs, subroutines; the basic data types of scalar, array, and hash; and regular expressionsfor searching and for
altering strings. In other words, you should be able to program Perl well enough to extract datafrom sources such as
GenBank and the Protein Data Bank using pattern matching and regular expressions.

If you are new to Perl but feel you can forge ahead using alanguage summary and examples of programs, Appendix
A providesasummary of theimportant parts of the Perl language. Previous programming experiencein ahigh-level
language such as C, Java, or FORTRAN (or any sSimilar language); some experience at using subroutinesto bresk a
large problem into smaller, appropriately interrelated parts; and atinkerer's delight in taking things apart and seeing
what makes them tick may be al the computer-science prerequisites you need.

Thisbook is primarily written for biologists, so it assumes you know the el ementary facts about DNA, proteins, and
restriction enzymes, how to represent DNA and protein datain a Perl program; how to search for motifs; and the
structure and use of the databases GenBank, PDB, and Rebase. Because the book assumesyou are abiologist,
biology concepts are not explained in detail in order to concentrate on programming skills.

Biologicd datagppearsin many forms. The most important sources of biologica datainclude the repostory of public
genetic data called GenBank (Genetic Data Bank) and the repository of public protein structure data called PDB
(Protein Data Bank). Many other similar sources of biologica data such as Rebase (Restriction Enzyme Database)
areinwide use. All the databases just mentioned are most commonly distributed astext files, which makes Perl a
good programming tool to find and extract information from the databases.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

Organization of This Book

Herésaquick summary of what the book covers. If youre still relatively new to Perl you may want to work through
the chaptersin order. If you have some programming experience and are looking for ways to approach problemsin
bioinformatics with Perl, fed freeto skip around.

Part |

Chapter 1

Modules are the standard Perl way of "packaging” useful programs so that other programmers can easily use
previous work. Such standard modules as CGl, for instance, put the power of interactive web Site programming
within reach of a programmer who knows basic Perl. Also discussed in later chapters are Bioperl, for manipulating
biologica data, and DBI, for gaining accessto relational databases. M odules are sometimes considered the most
important part of Perl because that's where alot of the functionality of Perl has been placed. In this chapter | show
how to write your own modules, aswel as how to find ussful modules and use them in your programs.

Chapter 2

Complex data structures and references are fundamentally important to Perl. The basic Perl data structures of scalar,
array, and hash go along way toward solving many (perhaps most) Perl programming problems. However, many
commonly used data structures such as multidimensiona arrays, for instance, require more sophisticated Perl data
structures to handle them. Perl enables you to define quite complex data structures, and well see how al that works.

String dgorithms are standard techniques used in bioinformatics for finding important datain biologica sequences,
with them, you can compare two sequences, dign two or more sequences, assemble a collection of sequence
fragments, and so forth. String algorithms underlie many of the most commonly used programsin biology research,
such asBLAST. In this chapter, astring matching algorithm that finds the closest match to amotif, based on the
technique of dynamic programming, is presented in the form of aworking Perl program.

Chapter 3

Object-oriented programming is a standard approach to designing programs. | assume, as a prerequisite, that you are
familiar with the programming style caled declarative programming. (For example, C and FORTRAN are
declarative; C++ and Java are object-oriented; Perl can be either.) It'simportant for the Perl programmer to be
familiar with the object-oriented approach. For instance, modules are usudly defined in an object-oriented manner.

This chapter presents, step by step, the concepts and techniques of object-oriented Perl programming, in the context
of amodule that definesasimple classfor keeping track of genes.

Chapter 4

In this chapter, object-oriented programming is further explored in the context of developing software to convert
sequencefilesto dternate formats (FASTA, GCG, etc.). The concept of classinheritance isintroduced and
implemented.

Chapter 5

This chapter further devel ops object-oriented programming by writing a class that handles Rebase restriction enzyme
data, aclassthat calculates restriction maps, and aclassthat draws restriction maps.
Part 1

Chapter 6

Relationd databases are important in programming because they save, organize, and retrieve data sets. This chapter
introduces relationd databases and the SQL language and includes information on designing and administering

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Conventions Used in This Book

Thefollowing conventions are used in this book:
Congtant width

Used for arrays, classes, code examples, loops, modules, namespaces, objects, packages, statements, and to show
the output of commands.
Italics

Used for commands, directory names, filenames, example URLS, varigbles, and for new termswherethey are
defined.

i Thisicon designates anote, which isan important aside to the nearby text.

=
i

i Thisicon designates awarning relating to the nearby text.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Comments and Questions

Please address comments and questions concerning this book to the publisher:
ORellly & Associates, Inc. 1005 Gravenstein Highway NorthSebastopol, CA 95472(800) 998-9938 (in the United
States or Canada)(707) 829-0515 (international or loca)(707) 829-0104 (fax)

Thereisaweb page for this book, which lists errata, examples, or any additional information. Y ou can accessthis

page a:
http:/Aww.orellly.com/cata og/mperlbio

To comment or ask technical questions about this book, send emall to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web
dtea:
http:/mww.oreilly.com
[TeamLiB]

http://www.oreilly.com/catalog/mperlbio
mailto:bookquestions@oreilly.com
http://www.oreilly.com/default.htm
http://www.oreilly.com/catalog/mperlbio
http://www.oreilly.com

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Acknowledgments

My editor, Lorrie LeJeune, deserves special thanksfor her work in developing the bioinformaticstitlesat O'Reilly.
Her leve of expertiseisrarein any field. | thank Lorrie, Tim O'Reilly, and their colleagues for making it possibleto
bring these books to the public. | thank my technica reviewersfor their invauable expert hep: Jod Greshock, Joe
Johnston, Andrew Martin, and Sean Quinlan. | also thank Dr. Michagl Caudy for his helpful suggestionsin Chapter 3.
| thank again those individuas mentioned in the first volume, especialy those friends who have supported me during
the writing of thisbook. | am also grateful to al those readers of the first volume who took the time and trouble to
point out errors and weaknesses, their comments have substantially improved thisvolume aswéll. | thank Eamon
Grennan and Jay Parini for their patient help with my writing. And | especidly thank my much-loved children Rose,
Eamon, and Joe, who are my most sincere teachers.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

| TeamLiB | MEXT k

Part |. Object-Oriented
Programming in Per|

| TeamLiB | MEHT b

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 1. Modular Programming with Per|

Perl modules are essentia to any Perl programmer. They are agreat way to organize codeinto logical collections of
interacting parts. They collect useful Perl subroutines and provide them to other programs (and programmers) in an
organized and convenient fashion.

This chapter beginswith adiscussion of the reasons for organizing Perl code into modules. Modules are comparable
to subroutines: both organize Perl code in convenient, reusable "chunks.”

Later in thischapter, I'll introduce asmdl module, GeneticCode.pm. This example shows how to creste Smple
modules, and I'll give examples of programsthat use thismodule.

I'll lso demondtrate how to find, ingtal, and use modules taken from the dl-important CPAN collection. A familiarity
with searching and using CPAN isan essentid sKill for Perl programmers; it will help you avoid lots of unnecessary
work. With CPAN, you can eadly find and use code written by excellent programmers and road-tested by the Perl
community. Using proven code and writing less of your own, you'll savetime, money, and heedaches.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

1.1 What |sa M odule?

A Perl moduleisalibrary file that uses package declarations to create its own namespace. Perl modules provide an
extralevd of protection from name collisions beyond that provided by my and use dtrict. They adso serve asthe basic
mechanism for defining object-oriented classes.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

1.2 Why Per|l Modules?

Building amedium- to large-sized program usudly requires you to divide tasksinto severd smdler, more
manageable, and more interactive pieces. (A rule of thumb isthat each "piece" should be about one or two printed
pagesin length, but thisisjust agenera guiddine.) An andogy can be made to building amicroarray machine, which
requires that you construct separate interacting pieces such as housing, temperature sensors and controls, robot arms
to position the pipettes, hydraulic injection devices, and computer guidance for al these systems.

1.2.1 Subroutines and Softwar e Engineering

Subroutines divide alarge programming job into more manageable pieces. Modern programming languages all
provide subroutines, which are dso caled functions, coroutines, or macrosin other programming languages.

A subroutine lets you write a piece of code that performs some part of adesired computation (e.g., determining the
length of DNA sequence). This codeiswritten once and then can be called frequently throughout the main program.
Using subroutines speedsthe time it takes to write the main program, makes it more reliable by avoiding duplicated
sections (which can get out of sync and make the program longer), and makes the entire program easier to test. A
useful subroutine can be used by other programs aswell, saving you development time in the future. Aslong asthe
inputs and outputs to the subroutine remain the same, itsinterna workings can be dtered and improved without
worrying about how the changes will affect the rest of the program. Thisis known as encapsulation.

The benefits of subroutinesthat I've just outlined aso apply to other approaches in software engineering. Perl
modules are atechnique within alarger umbrelaof techniques known as software encapsulation and reuse. Software
encapsulation and reuse are fundamentd to object-oriented programming.

A related design principleis abstraction, which involves writing code that is usable in many different Stuations. Let's
say you write asubroutine that addsthe fragment TTTTT to the end of astring of DNA. If you then want to add the
fragment AAAAA to the end of astring of DNA, you have to write another subroutine. To avoid writing two
subroutines, you can write one that's more abstract and adds to the end of a string of DNA whatever fragment you
giveit asan argument. Using the principle of abstraction, you've saved yoursdf haf the work.

Hereisan example of aPerl subroutine that takes two strings of DNA asinputs and returns the second one
appended to the end of the firgt:

sub DNAappend {
ny ($dna, $tail) = @;

return($dna . $tail);
}

This subroutine can be used asfollows;

ny $dna = ' ACCGGAGT TGACTCTCCGAATA' ;
ny $polyT = "TTTTTTTIT ;

print DNAappend($dna, $pol yT);

If you wish, you can a o define subroutines poly T and polyA like so:

sub pol yT {
ny ($dna) = @;

return DNAappend($dna, 'TTTTTTTT);

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

1.3 Namespaces

A namespace isimplemented as a table containing the names of the variables and subroutinesin aprogram. The
tableitsdf iscaled a symbol table and isused by the running program to keep track of variable values and
subroutine definitions as the program evolves. A namespace and asymbol table are essentidly the samething. A
namespace exists under the hood for many programs, especialy those in which only one default namespace is used.

Large programs often accidentally use the same variable name for different variablesin different parts of the program.
Theseidenticaly named variables may unintentionally interact with each other and cause serious, hard-to-find errors.
Thisgituation is called namespace collision. Separate namespaces are one way to avoid namespace collision.

The package declaration described in the next section is one way to assign separate namespaces to different parts of
your code. It gives strong protection againgt accidentally using a variable name that's used in another part of the
program and having the two identically-named variablesinteract in unwanted ways.

1.3.1 Namespaces Compar ed with Scoping: my and use strict

The unintentiona interaction between variables with the same name is enough of a problem that Perl provides more
than one way to avoid it. Y ou are probably aready familiar with the use of my to restrict the scope of avariableto its
enclosing block (between matching curly braces{}) and should be accustomed to using the directive use strict to
require the use of my for al variables. use strict and my are agreat way to protect your program from unintentiona
reuse of variable names. Make ahabit of usng my and working under use strict.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

1.4 Packages

Packages are a different way to protect a program's variables from interacting unintentionaly. In Perl, you can easly
assign separate namespaces to entire sections of your code, which helps prevent namespace collisons and lets you
create modules.

Packages are very easy to use. A one-line package declaration puts a new namespace in effect. Herésasmple
exanple

$dna = ' AAAAAAAAAA'

package Muse;

$dna = ' CCCCCCCCCC

package Cel egans;

$dna = ' GGCEEECEEEEG ;

In this snippet, there are three variables, each with the same name, $dna. However, they arein three different
packages, so they appear in three different symbol tables and are managed separately by the running Perl program.

Thefirg line of the codeis an assgnment of apoly-A DNA fragment to avariable $dna. Because no packageis
explicitly named, this $dna variable appearsin the default namespace main.

The second line of code introduces a new namespace for variable and subroutine definitions by declaring package
Mouse;. At this point, the main namespace is no longer active, and the Mouse namespace is brought into play. Note
that the name of the namespaceis capitdized; it's awel-established convention you should follow. The only
noncapitalized namespace you should use isthe default main.

Now that the Mouse namespace isin effect, the third line of code, which declaresavariable, $dna, isactualy
declaring a separate variable unrelated to thefirdt. It contains a poly-C fragment of DNA.

Finally, the last two lines of code declare anew package caled Celegans and anew variable, dso caled $dna, that
stores a poly-G DNA fragment.

To use these three $dnavariables, you need to explicitly state which packages you want the variables from, asthe
following code fragment demongtrates:

print "The DNA fromthe main package:\n\n";
print $main::dna, "\n\n";

print "The DNA fromthe Muse package:\n\n";
print $Muse::dna, "\n\n";

print "The DNA fromthe Cel egans package:\n\n";
print $Cel egans::dna, "\n\n";

Thisgivesthefollowing output:
The DNA fromthe mai n package:

AAAAAAAAAA
The DNA fromthe Muse package:

(666060600000

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] e
1.5 Defining Modules

To begin, take afile of subroutine definitionsand cdll it something like Newmodule.pm. Now, edit thefileand giveit
anew firg line
package Newnodul e;

and anew last line 1;. Y ou've now created a Perl module.

To make a Celegans module, place subroutinesin afile caled Cdeganspm, and add afirst line:
package Cel egans;

Add alagt line 1;, and you've defined a Ceegans module. Thislast linejust ensuresthat the library returnsatrue
valuewhenit'sread in. It's annoying, but necessary.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

1.6 Storing Modules

Where you store your .pm module files on your computer affects the name of the module, so let's take amoment to
sort out the most important points. For al the details, consult the perlmod and the perlmodlib parts of the Perl
documentation at http://www.perldoc.org. Y ou can aso type perldoc perlmod or perldoc perlmodlib at a shell
prompt or in acommand window.

Onceyou gart usng multiplefilesfor your program code, which happensif you're defining and usng modules, Perl
needs to be able to find these variousfiles; it provides afew different waysto do so.

The smplest method isto put al your program files, including your modules, in the same directory and run your
programs from that directory. Here's how the module file Celegans.pm isloaded from another program:
use Cel egans;

However, it's often not so smple. Perl uses modules extensvely; many are built-in when you ingtdl Perl, and many
more are available from CPAN, asyou'll seelater. Some modules are used frequently, some rarely; many modules
cdl other modules, which in turn cal ill other modules.

To organize the many modules a Perl program might need, you should place them in certain standard directoriesor in
your own development directories. Perl needsto know where these directories are so that when amoduleiscaledin
aprogram, it can search the directories, find thefile that contains the module, and load it in.

When Perl wasingtalled on your computer, alist of directoriesin which to find modules was configured. Every timea
Perl program on your computer refersto amodule, Perl looksin those directories. To see those directories, you only
need to run a Perl program and examine the built-in array @INC, like so:

print join("\n", @NC, "\n";

Onmy Linux computer, | get the following output from that statement:

fusr/local/lib/perl5/5.8.0/i686-1inux
/fusr/local/lib/perl5/5.8.0
/fusr/local/lib/perl5/site _perl/5.8.0/i686-Iinux
lusr/local/lib/perl5/site_perl/5.8.0
lusr/local/lib/perl5/site_perl/5.6.1
lusr/local/lib/perl5/site_perl/5.6.0
lusr/local/lib/perl5/site_perl

These are dl locations in which the standard Perl moduleslive on my Linux computer. @INC issimply an array
whose entries are directories on your computer. The way it looks depends on how your computer is configured and
your operating system (for instance, Unix computers handle directories a bit differently than Windows).

Notethat thelast line of that list of directoriesisa solitary period. Thisis shorthand for "the current directory,” that is,
whatever directory you happen to be in when you run your Perl program. If thisdirectory ison thelist, and you run
your program from that directory aswell, Perl will find the .pm files.

When you develop Perl software that uses modules, you should put al the modulestogether in acertain directory. In
order for Perl to find this directory, and load the modules, you need to add aline before the use MODULE
directives, tdling Perl to additionaly search your own module directory for any modules requested in your program.
For ingtance, if | put amodule I'm developing for my program into afile named Celegans.pm, and put the

http://www.perldoc.org/default.htm
http://www.perldoc.org

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

1.7 Writing Your First Perl Module

Now that you've been introduced to the basic ideas of modules, it'stime to actualy examine aworking example of a
module.

In this section, well write amodule called Geneticcode.pm, which implements the genetic code that maps DNA
codons to amino acids and then trandates a string of DNA sequence datato a protein fragment.

1.7.1 An Example: Geneticcode.pm

Let'sgart by creating afile called Geneticcode.pm and using it to define the mapping of codonsto amino acidsina
hash variable called %genetic_code. Well aso discuss asubroutine called codon2aathat uses the hash to trandate
Its codon arguments into amino acid return values.

Here are the contents of the first module file Geneticcode.pm:
package Ceneti ccode;

use strict;
use war ni ngs;

my(%genetic_code) = (

"TCA' => 'S, # Serine
'"TCC => 'S, # Serine
'"TCG => 'S, # Serine
"TCT" => 'S, # Serine
"TTC = 'F', # Phenyl al ani ne
"TTT = 'F, # Phenyl al ani ne
"TTA => 'L', # Leuci ne
"TTG => '"L', # Leuci ne
"TAC =>"'Y", # Tyrosine
"TAT => 'Y, # Tyrosine
"TAA => ' # Stop

'"TAG => ' ', # Stop

'TCC = ' C, # Cysteine
‘Ter = ' C, # Cysteine
"TGA => ' " # Stop

"TCG => W, # Trypt ophan
"CTA' => 'L', # Leuci ne
"CTC =>"'"Ll'", # Leuci ne
"CTG =>"L'", # Leuci ne
"CTT" => "L", # Leuci ne
"CCA' =>"'P', # Proline
"CCC =>"P', # Proline
"CCG => "'P', # Proline
"CCT" =>'"P', # Proline
"CAC =>"H, # Histidine
"CAT' => 'H, # Histidine
"CAA = 'Q, # d utam ne
"CAG =>'Q, # d utam ne
"CRA' = 'R, # Arginine
"CeC = 'R, # Arginine
"CCG = 'R, # Arginine
"cer' = 'R, # Arginine
"ATA = ', # | sol euci ne
"ATC = "I", # | sol euci ne
ATT => "', # | sol euci ne
AT —_~ ' NN H Nht hi Arnt A

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

1.8 Using M odules

So far, the benefit of modules may seem questionable. Y ou may be wondering what the advantage isover smple
libraries (without package declarations), since the main result seemsto be the necessity to refer to subroutinesin the
modules with longer names!

1.8.1 Exporting Names

Therésaway to avoid lengthy module names and still use the short onesiif you place acal to the special Exporter
module in the module code and modify the use MODULE declaration in the calling code.

Going back to thefirst example Geneticcode.pm module, recdl it began with thisline:
package Ceneti ccode;

and included the definition for the hash genetic_code and the subroutine codon2aa.

If you add these linesto the beginning of thefile, you can export the symbol names of variables or subroutinesin the
module into the namespace of the calling program. Y ou can then use the convenient short names for things (e.g.,
codon2aa instead of Geneticcode::codon2aa). Here's a short example of how it works (try typing perldoc Exporter
to see thewhole story):

package Ceneti ccode;

require Exporter;
@ SA = gwW Exporter);

@XPORT K = qgWM...); # synmbols to export on request

Here's how to export the name codon2aa from the module only when explicitly requested:
@XPORT_OK = gw codon2aa) ; # synbols to export on request

The calling program then hasto explicitly request the codon2aa symboal like so:
use Ceneticcode gw codon2aa);

If you use this gpproach, the calling program can just say:
codon2aa($codon) ;

instead of:

Genet i ccode: : codon2aa($codon) ;

The Exporter module that'sincluded in the standard Perl distribution has severa other optional behaviors, but the
way just shown isthe safest and most useful. Asyou'll see, the object-oriented programming style of using modules
doesn't use the Export facility, but it isauseful thing to havein your bag of tricks. For more information about
exporting (such aswhy exporting is aso known as " polluting your namespace”), see the Perl documentation for the
Exporter module (by typing perldoc Exporter at acommand line or by going to the http://mww.perldoc.com web

page).

http://www.perldoc.com/default.htm
http://www.perldoc.com

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

1.9 CPAN Modules

The Comprehensive Perl Archive Network (CPAN, http://mww.cpan.org) isan impressvely large collection of Perl
code (mostly Perl modules). CPAN is easily accessible and searchable on the Web, and you can use its modules for
avariety of programming tasks.

By now you should have the basic idea of how modules are defined and used, so let's take sometimeto explore
CPAN to see what goodies are available.

There are two important points about CPAN. First, alarge number of the things you might want your programsto do
have adready been programmed and are easily obtained in downloadable modules. Y ou just have to go find them at
CPAN, ingdl them on your computer, and call them from your program. Well take alook a an example of exactly
that in this section.

Second, al code on CPAN isfree of charge and available for use by avery unrestrictive copyright declaration.
Sound good? Keep reading.

CPAN includes convenient ways to search for ussful modules, and there's a CPAN.pm module built-in with Perl that
meakes downloading and ingtaling modules quite easy (when thingswork well, which they usudly do). If you can't find
CPAN.pm, you should consider updating your current version.

Y ou can find more information by typing thefollowing at the command line:
per | doc CPAN

Y ou can aso check the Frequently Asked Questions (FAQ) available at the CPAN web site.

1.9.1 What's Available at CPAN?

The CPAN web site offers severa "views' of the CPAN collection of modules and severd aternate ways of
searching (by module name, category, full text search of the module documentation, etc.). Hereisthe top-level
organization of the modules by overal category:

Devel oprment Support
Operating System I nterfaces
Net wor ki ng Devi ces | PC

Data Type Uilities

Dat abase Interfaces

User Interfaces

Language Interfaces

Fil e Names Systens Locking
String Lang Text Proc

Opt Arg Param Proc
Internationalization Locale
Security and Encryption
VWrld Wde Wb HTM. HTTP CGQ
Server and Daemon Utilities
Ar chi ving and Conpression

| mmges Pi xmaps Bit maps

Mai | and Usenet News

Control Flow Utilities

Fil e Handl e | nput Qutput

M crosoft W ndows Mbodul es

http://www.cpan.org/default.htm
http://search.cpan.org/default.htm
http://www.cpan.org
ftp://cpan.cse.msu.edu/authors/01mailrc.txt.gz
ftp://cpan.cse.msu.edu/modules/02packages.details.txt.gz
ftp://cpan.cse.msu.edu/modules/03modlist.data.gz
ftp://cpan.cse.msu.edu/authors/id/J/JO/JONO/Statistics-ChiSquare-0.3.tar.gz
ftp://cpan.cse.msu.edu/authors/id/J/JO/JONO/CHECKSUMS
http://search.cpan.org

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

1.10 Exercises
Exercise 1.1

What are the problems that might arise when dividing program code into separate module files?
Exercise 1.2

What are the differences between libraries, modules, packages, and namespaces?
Exercise 1.3

Write amodule that finds modules on your compuiter.
Exercise 1.4

Where do the standard Perl distribution moduleslive on your computer?
Exercise 1.5

Research how Perl manages its namespaces.
Exercise 1.6

When might it be necessary to export names from amodule? When might it be useful ? When might it be convenient?
When might it be avery bad idea?
Exercise 1.7

The program testGeneticcode contains the following loop:

Transl ate each three-base codon to an anino acid, and append to a protein
for(my $i=0; $i < (length($dna) - 2) ; $i += 3) {
$protein .= Geneticcode:: codon2aa(substr($dna, $i, 3));

}

Here's another way to accomplish that 1oop:
Transl ate each three-base codon to an anino acid, and append to a protein

my $i =0;

while (my $codon = substr($dna, $i += 3, 3)) {
$protein .= Geneticcode: : codon2aa($codon);

}

Compare the two methods. Which iseasier to understand? Which iseaser to maintain? Which isfaster? Why?
Exercise 1.8

The subroutine codon2aa causes the entire program to halt when it encountersabad" codon in the data. Often
(usudly) it isbest for asubroutine to return some indication that it encountered a problem and let the calling program
decide how to handleit. It makes the subroutine more generdly useful if it isn't dways hdting the program (athough
that iswhat you want to do sometimes).

Rewrite codon2aa and the calling program testGeneticcode o that the subroutine returns some error—perhaps the
vaue undef—and the cdling program checksfor that error and performs some action.
Exercise 1.9

Write aseparate module for each of the following: reading afile, extracting FASTA sequence data, and printing
sequence data to the screen.
Exercise 1.10

Download, instal, and use amodule from CPAN.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 2. Data Structuresand String Algorithms

So far in this book, I've used the standard Perl data structures of scalars, arrays, and hashes. However, it is often
necessary to handle data with amore complex structure than what those basics dlow. For instance, it is frequently
useful to have atwo-dimensiond array.

In this chapter, you'll learn how to define and use references and complex data structures. After you learn the
fundamentds, you'll gpply the new techniquesto implement a biologicdly important algorithm. These techniquesare
aso fundamenta to the implementation of object-oriented programming, asyou'll seein Chapter 3.

Thedgorithm well study is called gpproximate string matching. It lets you find the closest match for apeptide
fragment in aprotein, for instance. It uses an agorithmic technique caled dynamic programming, an essentid tool for
many smilar biologica tasks, such asaligning biological sequences. In this chapter, you'll see how Perl references can
be used to write programs for data problems with more complex relationships. References are also used for the
objects of object-oriented programming.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] e
2.1 Basic Per| Data Types

Before tackling references, let'sreview the basic Perl datatypes:
Scalar

A scdlar vaueisasring or any one of severd kinds of numbers such asintegers, floating-point (decimal) numbers, or
numbersin scientific notation such as 2.3E23. A scaar variable beginswith the dollar sign $, asin $dna.
Array

An array isan ordered collection of scalar values. An array variable beginswith an at Sgn @, asin @peptides. An
array can beinitidized by alist such as @peptides = (‘zeroth', first', 'second). Individua scaar eements of an array
arereferred to by firgt preceding the array name with adollar sign (an individua element of an array isascdar value)
and then following the array name with the position of the desired e ement in square brackets. Thusthefirst eement
of the @peptides array is referenced by $peptideq 0] and has the value 'zeroth'. (Note that array elements are given
thepositions0, 1, 2, ..., n-1, where nisthe number of eementsinthe array.)

Recall that printing an array within double quotes causes the elements to be separated by spaces; without the double
quotes, the eements are printed one after the other without separations. This snippet:
@entanmers = ('cggca', 'tgatc', 'ttggc');

print "@entaners", "\n";
print @entamers, "\n";

produces the outpuit:
cggca tgatc ttgge
cggcat gat ct t ggc Hash

A hashisan unordered collection of key value pairs of scaar values. Each scalar key is associated with ascalar
vaue. A hash variable begins with the percent Sign %, asin %geneticmarkers. A hash can beinitidized like an array,
except that each pair of scdars aretaken asakey withitsvalue, asin:

The => symbal isjust asynonym for acommathat makesit easer to seethe key/value pairsin such lists.[1] An
individua scalar vaueisretrieved by preceding the hash namewith adollar sgn (anindividua vaueisascaar vaue)
and following the hash name with the key in curly braces, asin $geneticmarkers{ ‘hairless’}, which, because of how
it'sinitidized, hasthevaue'no'.

[1] It dso forcestheleft Sdeto beinterpreted asastring.

[TeamLiB] ex

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

2.2 References

Many computer languages provide variablesthat alow you to refer to, or point at, other values. So, instead of a
variable containing data such asa string or number of interest, the variable contains the location of the data; it tells
you where to go to get the value you want. In Perl, the use of ascaar variable to refer to another valueiscaled a
reference, and the value being pointed at is called areferent.

References adlow you to do many useful thingsin Perl; you can define multidimensiona arrays and other more
complex data structures and avoid copying large amounts of data (for instance, when passing argumentsinto
subroutines). Using references can make your programs faster, more efficient, and shorter. Referenceshave a
number of uses, asyou'll seein the next sections.

2.2.1 Referencesto Scalars

Here's an example of areference:
$peptide = ' El QADEVRL' ;

$pepti deref = \$pepti de;

print "Here is what's in the reference:\n";
print $peptideref, "\n";

print "Here is what the reference is pointing to:\n";
print ${$peptideref}, "\n";
print $$peptideref, "\n";

This Perl code produces the following output:

Here is what's in the reference:
SCALAR(0x80f edac)
Here is what the reference is pointing to:

El QADEVRL
El QADEVRL

What's going on here?

Firgt, astring value of EIQADEVRL isassigned to the scalar variable $peptide. Next, a backd ash operator is used
before the $peptide variable to return areference to the variable. Thisreferenceis saved in the scalar variable

$peptideref.

The next lines of code show what this example redly does. When you print out the (actud) vaue of the reference
variable $peptideref, you get the vaue:
SCALAR(0x80f edac)

This saysthat the reference variable $peptideref is pointing to ascaar vaue (which isthe value of the scalar variable
$peptide). It aso gives ahexadecima number that specifies where in the computer memory the value for that varigble
resides.

The Ox at the beginning of the number saysthat it isahexadecima number.[2] Hexadecimal (base 16) numbersare a
way to specify locationsin computer memory. The exact location in the computer memory where this $peptide value
resdesisamost never of practical importance to you. However, it can help when debugging code that uses

referencecs and an it i< dianl aved when vor 1 nrint the valiie of areference acsweve it done or when voi 1 1i1ee the Perl

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

2.3 Matrices

Perl matrices are built from smpler data structures using references. Recall that amatrix isaset of vauesthat can be
uniquely referenced by indexes. If only oneindex isrequired, the matrix isone-dimensiond (thisisexactly how an
array worksin Perl). If nindexes are required, the matrix isn-dimensional.

2.3.1 Two-Dimensional M atrices

A two-dimensional matrix isone of the smplest complex data structures. It can be conceptudized as atable of rows
and columns, in which each dement of thetableis uniquely identified by its particular row and column.

There are severd waysto build matricesin Perl. Well look at some of the most useful.

Because there is no built-in matrix data Structure, you have to build amatrix from other data Structures. The most
sraightforward way to do thisiswith an array of arrays:

@r obes = (

[1, 9],
1],
7],

8]

oo w,

= 01N
Moon

[2,
[5,
[1,
)

print "The probe at row 1, colum 2 has value ", $probes[1][2], "\n";

Thisprintsout:
The probe at row 1, columm 2 has value 8

*+ 4. Recdl thatin Perl thefirst element of an array isindexed 0; so row 1inthisprogramis

43" actualy the second row, and column 2 is actualy the third column. Sometimes you may
want to refer to the Oth row asrow 1; you have to adjust your code and your interactions
with the user accordingly.

Thismatrix isimplemented as an array (in parentheses), each element of which isareference to an anonymous array
[in square brackets], which itsdf isalist of integers.

Another good way to build an array isto declare areference to an anonymous array. In the following example, |
declare an empty anonymous array and then populateit asdesired. Thisis, in effect, an anonymous array of
anonymous arrays.

Declare reference to (enpty) anonynous array

$array = [1];

Initialize the array
for($i=0; $i <4 ; ++$i) {
for($j=0; $ <4 ; ++3$j) {
Sarray->[$i][$] = $i * $;
}
}

Reset one of the elenents of the array
$array->[3][2] = 99:

http://www.perldoc.com/default.htm
http://www.perldoc.com/default.htm
http://www.perldoc.com
http://www.perldoc.com

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

2.4 Complex Data Structures

Different dgorithmsrequire different data structures. Using referencesin Perl, it is possible to build very complex data
structures.

This section gives a short introduction to some of the possihilities, such asahash with array vauesand a
two-dimensional array of hashes. See the recommended reading in Section 2.9 of this chapter for books and sections
of the Perl manud that are very helpful.

Perl uses the basic datatypes of scaar, array, and hash, plusthe ability to declare scaar references to those basic
datatypes, to build more complex structures. For instance, an array must have scaar e ements, but those scalar
elements can be references to hashes, in which case you have effectively created an array of hashes.

2.4.1 Hash with Array Values

A common example of acomplex data structure is a hash with array values. Using such a data structure, you can
associate alist of itemswith each keyword. The following code shows an example of how to build and manage such
adatagtructure. Assume you have a set of human genes, and for each human gene, you want to manage an array of
organismsthat are known to have closdly related genes. Of course, each such array of related organismscanbea
different length:

use Dat a: : Dunper;

% el at edgenes = ();

$rel at edgenes{' stronelysin'} = |
' C. el egans’',
" Ar abi dopsi s thaliana'
1
$rel at edgenes{' obesity'} = [
' Drosophila',
"Mus muscul us'

1
Now add a new related organismto the entry for 'stronelysin'

push(@ $rel atedgenes{' stronelysin'}}, 'Canis');
print Dunper (\% el at edgenes);

This program prints out the following (the very useful Data:: Dumper module is described in more detall later; try
typing perldoc Data::Dumper for the detail s of this useful way to print out complex data structures):
$VARL = {
"stronelysin' => |
' C. el egans',
" Ar abi dopsi s thaliana',
"Cani s'
] il
"obesity' =>|
' Drosophila',
'Mus nuscul us'

]
}

Thetricky part of this short program is the push. The first argument to push must be an array. In the program, this
array is @{ $rddatedgenes{ 'ssromdysin’} } . Examining this array from the inside out, you can seethat it refersto the

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

2.5 Printing Complex Data Structures

Sometimes you need to look inside your complex data structures to see what the settings are. One of the most useful
waysto examine adatastructure is by means of the Data::Dumper module. This module comes standard with dl
recent versions of Perl.

Hereisthe summary and part of the synopsis and description as output from the perldoc Data::Dumper command:

NAME
Dat a:: Dunper - stringified perl data structures, suitable
for both printing and "eval"
SYNOPSI S
use Dat a:: Dunper
sinple procedural interface
print Dunper ($foo, $bar);
(...)
DESCRI PTI ON

Gven a list of scalars or reference variables, wites out

their contents in perl syntax. The references can al so be

obj ects. The contents of each variable is output in a

single Perl statement. Handles self-referential strucTures correctly.

The return value can be "eval"ed to get back an identica
copy of the original reference structure.

(...)

Thisoutput of atwo-dimensiond array illusratesits use:
use Dat a: : Dunper

Sarray = [];

Initialize the array
for($i=0; $i < 4 ; ++%i) {
for($j=0; $j < 4 ; ++$j) {
$array->[$i][$j] = $i * $;
}

}

Print the array "by hand"
for($i=0; $i <4 ; ++$i) {
for($j=0; $j < 4 ; ++$j) {
printf("98d ", Sarray->[$i][$j]);
}

print "\n";
}

Print the array using Data:: Dunper
print Dunper($array);

This produces the output:
0O 0 0 O
o 1 2 3
0 2 4 6
0 3 6 9
$VARL = [
[
01

01

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

2.6 Data Structuresin Action

The previous sections introduced afair amount of new Perl syntax and capabilities. Now, let's see some of these new
capabilitiesin action.

2.6.1 The Problem of String Matching

It isfrequently important in biology to find the best possible match for ashort sequence in alonger sequence; for
example, between an oligonucleotide and the sequence of DNA that has been clonedinaYAC or BAC. Thismatch
need not aways be perfect; frequently, what isimportant isto find the closest match available. This problem isknown
In computer science as approximate string matching, and dynamic programming is apopular technique used to
compute the solution.

The problem of string matching isto find a pattern, such as anucleotide or peptide fragment, in alonger text such asa
chromosome or protein.

The problem of approximate string matching isto find a pattern in atext in which the match might not be perfect.
Perhaps afew of the characters are different or missing; the problem isto find the best match possible.

2.6.2 Genetic Variability and String Matching

Biologicaly, approximate matches are of commanding importance. Evolutionary changes between species can make
geneswith essentialy the same function collect afair number of individua base changes, they may even have acquired
differencesin exon structure. Even within aspecies, individua base changes among groupsin the population (sngle
nucl eotide polymorphisms) are important causes of disease and important cluesin the discovery of disease-causing
genes.

Mutations tend to accumulate over time in noncoding regions of DNA; mutationsin coding regionstend to avoid
dtering critical regions essentid for the functioning of the gene (where mutations may be fatd to the organism). Evena
noncoding region may be critical to the regulation of agene and thustend to resst mutations. Asaresult, sudying
where mutations are not accumulating is often an important clue to discerning the function and control of ageneand
its associated protein.

Dueto the redundancy of the genetic code, mutationsin DNA may not affect the coding of the associated protein.
Other mutations may make a change in acoded amino acid, but it may be an amino acid with smilar propertiesto the
origina amino acid; for instance, both amino acids may be hydrophilic. Tracing these kinds of mutationsis another
source of important information about the process of mutation. It can give vita cluesto the conservation of critical
coding regions and to thefolding of proteins.

Biologistswill have no difficulty expanding upon the preceding brief motivation for sudying gpproximate string
matching and other techniques that find similarities between biological molecules. Many standard |aboratory
techniques rely on the annedling of amolecule to another molecule with smilar, but not necessarily exact, structure.

In the discussion that follows, you'll use your new knowledge of complex datastructuresin Perl to implement an
agorithm that finds approximate matches of patternsin text, such asDNA fragmentsin chromosomes or peptide

franmente in nrotal ne

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

2.7 Dynamic Programming

Dynamic programming computes the values for small subproblems and stores those values in amatrix. The stored
vaues are then used to solve larger subproblems (without incurring the cost of recomputing the smaller subproblems)
and so on until the solution to the overal problem isfound. Theterm "dynamic programming” isabit of amisnomer
snceit doesn't involve changing values over time asthe word "dynamic” suggests.

This approach relies on having a data structure available to store the intermediate val ues as the algorithm proceeds.
The data structure may require afair amount of computer memory, but the overal speed of the dgorithm often makes
the memory cost worthwhile. In this section, well use a Perl multidimensiona array, namely asmple two-dimensiond
matriX, to solve an gpproximate string matching problem.

Our dgorithm will find a (shorter) pattern in a (longer) text. Well start with atwo-dimensiona array, or matrix. The
columns of the matrix will be associated with the (shorter) pattern, and the rows of the matrix will be associated with
the (longer) text. The zeroth row and the zeroth column will beinitialized to the gppropriate starting vaues. Well then
cdculate each value in the matrix by examining adjacent, aready calculated vauesin conjunction with the characters
of the pattern and the text. After the entire matrix has been filled in, well have the answer to our problem. That is,
weéll find the pogition(s) in the text that most closaly match the pattern, and well do so by smply examining the values
inthelast row of the matrix.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

2.8 Approximate String Matching

Y ou've most likely learned how to use regular expressionsto find any of a set of possible patternsin astring.
Approximate string matching issimilar: an gpproximate string matching agorithm finds any of aset of possble
patternsin astring. However, the two approaches are quite different in their capabilities and their ease of use. Smply
stated, approximate string matching can find many close matches to a pattern that would be very tedious to specify
using regular expressons.

2.8.1 Edit Distance

There are several ways to measure the distance between two strings, and our agorithm will use one such measure.
Some variants of this measure are considered in the exercises at the end of the chapter.

Our agorithm usesthe idea of edit distance to measure the similarity between two strings. Theideais quite smple.
Assume that there are three things you can do to ater astring:
Substitution

Change any character to adifferent character
Deletion

Delete any character
Insertion

Insert anew character at any position

Now, let's say that every time you make any of these three edits, you incur an edit cost of 1. Now, cal the edit
distance between two strings as the minimum edit cost needed to change one string into the other.

For instance, let's say there are two strings portend and profound. Y ou can apply the following edits to portend:
port end

(del ete 0)
prtend

(insert o)
pr ot end

(change t to f)
pr of end

(change e to 0)
pr of ond

(insert u)

pr of ound

Y ou can seethat five edits were gpplied. Assuming you can't find a quicker way to change one string into the other,
the edit distance between the two stringsis 5.

Clearly, you can dso start from the other string and apply the same ediitsin reverse (just interchanging the deletions
and insertions, and reversing the substitutions). So, starting from profound, delete u, change o to e, changef to't,
ddeteo, and findly insert o, to arrive a portend.

The relevance of this concept of edit distance to sequence dignment issmply: the smaler the edit distance, the better

I P - N

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

2.9 Resour ces

I recommend the following O'Reilly sources for more details on data structuresin Pexl:

Programming Perl, by Larry Wall, Tom Chrigtiansen, and Jon Orwant. Thisisthe bible of Perl programming.
Everything about data structuresis explained in detail.

Advanced Perl Programming by Sriram Srinivasan. An excellent book that covers references and data
structures.

Magtering Algorithmswith Perl by Jon Orwant, Jarkko Hietaniemi, and John Macdonald. A marvelous
book, especidly if you like this chapter. Many interesting data structures and agorithms are explained and
implemented in Perl.

The Perl Cookbook by Tom Christiansen and Nathan Torkington. Asthetitle implies, this book is composed
of fairly short recipes that accomplish particular tasks, grouped according to application area.

Hereswhereto go for Perl documentation:

The perlreftut tutoria page from the Perl documentation gives a short introduction to Perl references (type
perldoc perlreftut a your command lineif Perl isingaled, or visit the web page http://www.perldoc.com).

The perlref tutorial page from the Perl documentation discusses Perl referencesin detall.

The perldatatutoria page from the Perl documentation gives an introduction to Perl data structures.

The perldsc tutoria page from the Perl documentation presents a* cookbook” overview of Perl data
dructures.

The perllol tutoria page from the Perl documentation gives an introduction to arrays of arrays.

The literature on dgorithmsis vast, including many textbooks as well as advanced monographs and peer reviewed
journals. | recommend the following sources as afew entry points for more details on dynamic programming and
dgorithms

Computer Algorithms by Sara Baase and Allen VanGelder (Addison Wedey). Thisbook is clearly written
for the undergraduate level, and includes a very nice explanation of the algorithm presented in this chapter.

http://www.perldoc.com/default.htm
http://www.perldoc.com

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

2.10 Exercises
Exercise 2.1

Suggest aprogramming Situation in which it would make sense to have severd scalar referencesto one scaar
variable that contains a peptide fragment.
Exercise 2.2

When might you want to use areference to an (anonymous) scalar constant?
Exercise 2.3

Is $$arr[0] the same as $arr->[0]? Why or why not?
Exercise2.4

Write a subroutine that returns a reference to a hash. Declare areference to this subroutine and cdl it using the
reference, then print out the hash whose reference is returned from the subroutine.
Exercise 2.5

Write a subroutine that returns a new anonymous subroutine based on its arguments, which are passed to it as
references. Call the subroutine and then cal the new subroutine that is returned.
Exercise 2.6

Write asubroutine to multiply two matrices.
Exercise 2.7

Develop adata structure that isahash at the top level and can be used to record the datafrom microarray runs.
Exercise 2.8

Write amin subroutine thet returns the minimum of two integers. Rewritemin3 using it.
Exercise 2.9

Make a subroutine that prints the distance matrix. Make it handle the display of longer numbers appropriately.
Exercise 2.10

Make the subroutine from Exercise 2.9 also display the pattern and string aligned with the output of the edit distance
matrix.
Exercise 2.11

Make a subroutine that returns the edit distance array, the best score, and the locations of the best matches.
Exercise 2.12

Any differencein Exercise 2.11 if you caculate row by row instead of column by column?
Exercise 2.13

In Exercise 2.11, save space by keeping only two rowsin memory.
Exercise 2.14

In Exercise 2.11, report on types of edits of matches.
Exercise 2.15

In Exercise 2.14, show the strings digned, extra spaces for insertions or deletions, and flag mismatches.
Exercise 2.16

In Exercise 2.11, can you speed the program up by skipping computations when it becomes clear that the best score
you've aready found can't be matched or bettered in that column? Why or why not?
Exercise 2.17

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 3. Object-Oriented Programming in Perl

In Chapter 1, you saw how modules are defined and used, and in Chapter 2, how references and data structures
work. Now, it'stime to introduce the important concepts and techniques of object-oriented programming in Perl that
are based on modules and references.

Object-oriented (OO) programming is one of the most important approaches to writing programs, and it isan
approach that has been well supported by Perl for quite awhile. Other OO languages of interest include Java, C++,
and Smdlltalk. Many Perl modules are written in an OO style, and their proper use requires some fundamental
understanding of the OO approach. Luckily, the key concepts arefairly smple.

Perl easly supports both declarative and OO programming. (Perl was originally a declarative language only; the OO
stylewas added fairly early on.) Declarative programming is characterized by code that declares variables and
subroutines, conditiona tests, if-else branches, and loops, and various arithmetic, logical, and string operators. It isup
to you to manage the definition and use of the variables and subroutines so that they interact in appropriate ways.
(You'l see shortly how object-oriented programming imposes additiona congtraintsthat help you create
well-behaved programs.) Many declarative programming languages are well established, including Perl and such
gawartsas C, FORTRAN, and BASIC, to name just afew. By this point, assuming you have some experience
programming in Perl, you should be fairly comfortable with the declarative Syle.

Thefird part of this chapter isan overview of OO programming and how OO Perl modules are used. If yourea
beginning Perl programmer, you'll find them easy to use because they rarely require you to know how to write OO
Perl code. Depending on your needs and godss, thismight be dl the information you'll require from this chapter.

Asamore advanced programmer, you'll sometimes need to write your own OO bioinformatics software. If you're
such aprogrammer, the second part of this chapter will be of greatest interest to you. However, because the materia
is developed incrementdly, you will most likely want to read the chapter in order from beginning to end.

Perl makes clever and smple use of existing mechanismsto support OO programming. Perl packages and modules
are used to define OO classes, Perl references define OO objects, and Perl subroutines define OO methods. The
definitions of these termswill become clear as you read the chapter, but in brief, OO software is organized into
classesthat contain data called objects. Subroutines called methods operate on the objects.

Over the course of this chapter, I'll develop asmall example object module, Gene.pm, to demondirate the essentid's
of OO Perl. Gene.pm isdeveoped in four stages so you can learn the OO style gradually. Thefina codefor
Gene.pm serves as atemplate from which you can begin developing your own OO software.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.1 What Is Object-Oriented Programming?

Object-oriented programming isaway to organize code so it interactsin certain prescribed ways, obeying certain
rules about how the data and subroutines are organized. In other words, it imposes a certain programming discipline
that can lead to better and more reliable code.

Thekey ideaof OO programming isthat all datais stored and modified with specia data structures called objects,
and each kind of object can be accessed only by its defined subroutines called methods. The user of an OO classis
typicaly spared the effort of directly manipulating data, and can use class methods for thisinstead.

The promise of this OO structure of program codeisthat it makes the resulting programs cleanly designed, more
reliable, easier to reusein other programs, and easier to modify and improve. In essence, the gpproach imposes
certain regtrictions on what a programmer can do with the data and subroutines at hand.

Proponents of the OO approach cite the benefits this extra discipline provides. It is certainly true that you can follow
good programming practices without using an OO agpproach. However, OO does provide awell-defined framework
for encouraging discipline and good programming practices. In avery flexible language such as Perl, good practices
can sometimes be easier to enforce in the framework of OO. WEell see how this comes about in the examplesthat
follow.

3.1.1 Why Object-Oriented Programming?

It is often important and necessary to weigh the costs and benefits of agiven system againgt the dternativesin an
gpplied engineering discipline such as programming. The decision to use OO programming, declarative programming,
or some other paradigm, is often subject to religious debates, with some enthusiasts promoting their favorite
approach againg dl comers. Thisis especidly relevant to the Perl programmer, because Perl dlowsyou to writein
the declarative or in the OO style. Y ou should know that OO programming isn't ways the correct choice for a
programming project. Despite the real benefitsit can confer upon a software devel opment project, it can dso have
certain costs, these costs and benefits should be weighed against each other.

For instance, some types of software lend themsalves more readily to abstracting with OO techniques than others.
Object-oriented software development can sometimes take longer due to the overhead associated with itsleve of
abstraction. OO software sometimes runs dower than other approaches; this has certainly been truein Perl, and
athough not usudly aded bresker, it is sometimes an important consderation. (Current work on the upcoming Perl
6 isaddressing this performanceissue.)

In spite of these rictures, OO programming is often an excellent choice; it has become akey approach to writing

software in the Perl language.

3.1.2 Terminology
Object

An object isacollection of datathat logicaly belongstogether.

For instance, you might have a genome object that would have such attributes (or parts) asthe name of the organism,
the DNA sequence data, the start and end points for each exon, the geneswith their associated lists of exons, and so

forth The avart nati ire of an nhiect 1ie 2 matter of 1oni e and convenience and 1n the end 1t denaende on the 11 idomant

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.2 Using Perl| Classes (Without Writing Them)

Before you actudly start writing classes, it's hel pful to know how to use them. This section shows you how to use
OO Perl classes, even if the syntax is new to you and you've never written one yourself.

Thanksto the large and active community of Perl programmers, there are many useful Perl classes dready written
and fredly available to usein your programs. Very often, the class you want already exists. All youneedtodois
obtain it and useit.

First, you need to find the appropriate module or modules (CPAN isthe most common source for modules), ingtal it,
and examine the documentation to learn how to use the class. Finding and ingtalling OO modules employsthe same
process covered in Chapter 1.

Wheat's different about OO modulesis how they create data structures and call and pass arguments to subroutines. In
short, there's some new syntax to learn that amountsto adightly different style of programming.

Object-oriented code creates an object by naming the class and calling a specid method in the class (usudly called
new). The newly created object is areference to a data structure, usualy a hash. The object isthen used to call
methods (or OO subroutines). Y ou're used to subroutines that get their data passed in as arguments; by contrat,
OO0 code has adata structure that cals subroutinesto operate onit. My goal in this section isto explain enough of
this new terminology and syntax so you can read and understand the documentation for aclass, and useit in your
own programs.

L et's begin with the documentation for the Carp module, anonOO module that appears later in this chapter. Thisisa
smple moduleto usg; it defines four subroutines, and the documentation gives brief examples of their use. Because
the Carp module comesingtaled with any recent release of Perl, you don't haveto ingdl it. To find out how to useit,

type:
perl doc Carp

(Upper- and lowercase is sgnificant; typing perldoc carp won't work.) Here's the beginning of the output:

NAMVE
carp - warn of errors (from perspective of caller)
cl uck - warn of errors with stack backtrace
(not exported by default)
cr oak - die of errors (from perspective of caller)
confess - die of errors with stack backtrace
SYNOPSI S
use Carp;

croak "We're outta here!";

use Carp gwcl uck);
cluck "This is how we got here!";

It showswhat subroutines are available and how to use them in your code. Additiona details do appear in the
documentation. They are important and sometimes necessary to read carefully, but you usualy don't need to delve
any further than the SY NOPSI S section that gives examples. To usethe croak subroutine, you first load it with the
directive use Carp;. Y ou then call croak by providing a string containing a message as an argument; the program
prints the message and dies.

http://www.perldoc.com/default.htm
http://www.perl.com/default.htm
http://www.cpan.org/default.htm
http://www.bioperl.org/default.htm
http://www.perldoc.com
http://www.perl.com
http://www.CPAN.org
http://www.bioperl.org

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.3 Objects, Methods, and Classesin Perl

To the user of aclass, the most important piece of information is the interface describing how to usethe class. Usudly
thisinterface can easily be summarized in afew examples provided by the author of the class. The details of how the
classisimplemented may change; aslong asthe interface remains the same, your code needn't change even when the
internals of the class you're using change. This provides good modularization, protecting your system from theripple
effects of changesin individua components, thus making your code as awhole more robust and religble. Thisisone
of the main benefits of OO design.

With OO design, you know that:

A classisapackage.
An object isareference to adata structure in the class, that is marked (or "blessed") with the class name.
A method isasubroutinein the class.

Severd other concepts and their associated terminology are a so important in object-oriented programming. For
ingtance, inheritance enables one class to use the definitions from another class, while adding to or changing the
definitions

At this point you may be wondering: if an object isredly just adata structure (usudly areferenceto ahash), andif a
method isredly just asubroutine, then why al this new terminology? The answer isthat the framework imposed upon
these data Structures and subroutines, in which each data structure has a defined set of subroutines that alone can
access the data structure, isindeed anew level of abstraction—anew set of congtraints influencing the programming
sructure.

These condtraints have proved to be so frequently useful that the new terminology of class, object, and method does
say something new about the data structures and subroutines involved. Also, there are some new features such as
bless and the arrow notation that cause subroutines to behave alittle differently, as has been mentioned dready, and
will be explained in detail. But surprisingly few such additions are needed to transgition from aknowledge of Perl's
declarative style to Perl's OO style.

When you program using adefined class with its methods and objects, you can gain accessto the class dataonly
with the class methods provided by the class designer. The restriction of accessto a classs data to the methods aone
is caled encapsulation. From the standpoint of the programmer using the class, exactly how the methods and objects
areimplemented isn't necessarily a concern. Asaprogrammer using the class, you can regard the class asa black
box; you don't have to look inside to see how it isimplemented. Usudly, it's only the programer writing the code who
needs to worry about that.

Onefind point: inthefied of OO programming, different authors define termsin different ways and present differing
sets of essential concepts. Be warned that considerable diversity existsin the literature and among the languages that
deal with object-orientation. The excellent book Object Oriented Perl (see Section 3.14) includes atable that
matches basi ¢ concepts with some of the dternate terminologies for those concepts.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.4 Arrow Notation (->)

Object-oriented Perl code uses arrow notation (->) to cal methods. Understanding how thisworksis essentia to
understanding OO Perl. Before you start reading OO Perl code, let'slook more closdly at its main features and how
arrow notation is used to call methods.[2]

[2] Thearrow (->) aso gppearsin Perl when dealing with complex data structures, as you saw in Chapter 2, where
it's used for references to subroutines.

The arrow notation is used on an object to call amethod in a class. Because the object has been blessed (i.e.,
marked with the class name), Perl can tell from the object what classit'sin and so knowsto find the method in that
same class. With arrow notation, Perl also passesto the method a new argument that automatically appearsfirg inits
argument list. The other arguments are shifted over; the first argument is now the second, and so on. The automatic
passing of anew first argument to the method is the key to understanding OO Perl code.

The method name appears to theright of the arrow. Perl then uses what'simmediately to the left of the arrow to
identify the classin which to find the method. It also passes information about what's on the left of the arrow to the
method, where it appears asthe first argument of the method. The left Sde of the arrow may be in one of two forms:

The name of the class. Heré's an example:
TRNA- >new();

Here Perl seesthat the left Sdeisthe name of the TRNA class, thereforeit cdlsthe new subroutine in the
TRNA package. It dso automatically passesthe name TRNA to that subroutine asitsfirst argument, shifting
any other argumentsthat may have been explicitly given (you'll see how thisfeatureisusedin later examples).

Y ou heed to save the new object (ablessed reference to a hash) using the assignment operator = asfollows:
$trna_object = TRNA->new();

An object. Heré's an example:
$trna_obj ect->findl oops();

Perl seesthat on the left Side of the arrow $trna_object isan object of the TRNA class; it therefore callsthe
findloops method in the TRNA class. (It can see that $trna_object isa TRNA object because the object was
blessed into the TRNA classwhen it was created by the new method, as|I'll explain later.) Perl dso passesa
reference to the $trna_object object into the findloops method as the first argument to the method, shifting
any other arguments that may have been explicitly given.

Why does Perl do it thisway? The short answer to that question is that once you understand how it works, your
code will become smpler and more usable. Y ou will need to type class names | ess frequently, and you can use
methods written for one classin another class (inheritance).

The two new tricksthat Perl performs here are:

Using arrow notation to find the correct method in the correct class

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.5 Genel: An Exampleof a Perl Class

Thisfirst example of Perl code definesavery smdl Perl class. This code does severd new things, which | will explain
in detail after the code.

Thisfirst verson of the classis called Genel, and it demongtrates the essential features needed to implement asmple
class. Genel looks smilar to thelast module definitionin Chapter 1, but with afew new wrinklesthat transform it into
OO software. | progress from Genel.pm to Gene2.pm, then to Gene3.pm, and then to the find version, Gene.pm.

The methods of the Genel classwill permit creating Genel objects and finding out what the values of a Genel
object's attributes are.

Here's the module that implements a Genel class. | put the moduleinto afile caled Genel.pm and placeit into a
directory on my computer that can be found when Perl needsit. | continue putting my code into my own
development library directory, which on my Linux system isthe directory
/home/tisdall/MasteringPer|Bio/devel opment/lib. Thisdirectory is pointed out to Perl at the beginning of the
testGenel program that appears later as an example of how to use the Genel.pm module definition. Y ou will
probably use adifferent directory on your computer, in which case you'll have to changethisline:

use lib "/hone/tisdall/MsteringPerl Bi o/ devel oprent/1ib";

Y ou can dso put the directory on the command line or set the PERL5LIB environmentd variable, as described in
Chapter 1. Setting the PERL5LIB variable isthe easiest because you don't have to change the uselib linesin the
programs.

A Genel object consists of agene name, an organism represented by genus and species, achromosome, and a
reference to a protein structure in the PDB:
package Cenel;

use strict;
use war ni ngs;
use Carp;

sub new {

ny ($class, %arg) = @;
return bless {

__name => $ar g{ nane} || croak("no nane"),
_organism => $arg{organisn} || croak("no organisnt),
_chronosone => $arg{chronosone} || "????",
_pdbr ef => $ar g{pdbref} || "??2?7?
}, $class;
}
sub nane - -> { nane} }

{ $
sub organi sm { %
sub chronobsone { $
sub pdbr ef { %

-> { _chronosone}}

[O]
_[0] -> {_organisn} }
[O]
[0] -> {_pdbref} }

1;

That'sthewhole thing!

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.6 Details of the Genel Class

In this section, | introduce the OO features used to make aclassin Perl. First however, | explain the variable naming
convention | use, aswell asthe handy Carp module.

3.6.1 Variable Names and Conventions

Using an underscore in front of anameisaprogramming convention that usudly indicatesthat the item in question
(e.g., avariable or hash key) isn't meant for the outside world but only for interna use.

Thisisjust aconvention; Perl doesn't require you to do it. It will, however, make your code easier to read and
understand.

| generdly follow this convention and put underscoresin front of namesthat | don't want directly accessed by the
programmer using the class. (In Perl, unlike some more strict OO languages, you can access data that'sinternd to a
dass, which make this naming convention that distinguishesinterna variables particularly useful.)

Thus, in my Genel class, the attributes _name, _organism, _chromosome, and _pdbref are used interndly only asthe
hash keysfor the attributesin the object. When you use the class, as| do in my example program testGenel, you
don't even have to know these names exist.

Theinterface isthrough arguments that specify theinitiaization values of these attributes. These arguments are called
name, organism, chromosome, and pdbref. | aso have methods—the subroutines also called name, organism,
chromosome, and pdbref—that return the value of the actual attributes stored in the object.

3.6.2 Carp and croak

The Carp moduleis called near the top of Genel.pm with use Carp;.

Carpisastandard Perl module that provides informative error messagesin the case of problems. carp printsa
warning message; croak prints an error message and dies. They are very much like the Perl functionswarn and die;
they report the line number in which the problem occured in the error message and report from what subroutine they
were called. | use croak in my code; it prints out the error message provided, names the file and the line number and
subroutine whereit's caled from, and then kills the program.

Thisfunction is certainly ussful during development because it's another way to find errorsin aprogram asit's being
created. It also gives program users the ability to report the exact location of a problem, should one occur, to the
programming staff (which may be just one programmer, you!).

In my program output, the Carp messageis.
no nanme at testGenel line 35

It's produced by theline:
_name => $ar g{ nane} || croak("no name"),

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.7 Gene2.pm: A Second Example of a Perl Class

Genel demondtrated the fundamentals of aPerl class. Now, I'll build amore redistic example, which dso includesa
few additiond standard Perl techniques.

My godl isto present an example that you can imitate in order to begin to develop your own OO software. I'm going
to build the example in three more stages, expanding upon the Genel.pm module. Firg, I'll add mutators, which are
methods that ater the datain an object. I'll so add amethod that gives information about the classasawhole,
returning the count of how many objectsin the class exist in the running program. This depends on the use of
closures, methods that use variables declared outside the methods. Thisisthe new materia in the Gene2.pm module.

After that step, | introduce the AUTOLOAD mechanism, which givesasingle class method called AUTOLOAD that
can define large numbers of other methods and significantly reduce the amount of coding you need to writeto
develop amore complex object (among other benefits to be described later). That will be the Gene3.pm module.

WEell end up with a Gene.pm module you can use as abasis for your own Perl module development. It will add a
mechanism to specify what properties each attribute has (which can prevent improper data manipulation, for
ingtance). It will show how to initidize an object with class defaults and how to clone an existing object. Finaly,
Gene.pm will show you how to incorporate the documentation for a classright in the Perl code for the class.

Hereisthe code for the intermediate Gene2.pm module. Following the Gene2.pm moduleis an example of the code
and output of asmall test program that drives the module. Take aminute to ook at these two code examples,
especidly at the comments. The module Gene2.pm contains severd new detallsthat will be discussed following the
code. Thetest program should befairly easy to read and understand.

package Cene2;

#
A second version of the Gene.pm nodul e
#

use strict;
use war ni ngs;
use Carp;

C ass data and nmethods, that refer to the collection of all objects
in the class, not just one specific object

{
ny $ count = O;
sub get _count {
$ count;
}
sub _incr_count {
++$ count;
}
sub _decr_count {
--$ count;
}
}
The constructor for the class
sub new {

ny ($class, %rg) = @;

my $self = bless {
_name => $ar g{ nane} || croak("Error: no nane"),
_organi sm => $arg{organisn} || croak("Error: no organisni),

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.8 Gene3.pm: A Third Exampleof a Per| Class

We've gone through two iterations building an OO class with the Genel.pm and Gene2.pm modules. Now, let's add
afew more features and create the Gene3.pm module as a penultimate example for thisintroduction to OO
programming in Pexl.

Hereisthe code for Gene3.pm and for the test program testGene3; aso included isthe output produced by running
testGene3. Following the code will be adiscusson of the new festures of thisthird version of our example class. But
I'll point out before you read on, that AUTOLOAD isaspecid namein Perl for asubroutine that will handleacall to
any undefined subroutinein aclass. (I'll give more details after you look at the code.)

package Cenes3;

#

A third version of the Gene. pm nodul e
#

use strict;

use war ni ngs;
our $AUTOLOAD;, # before Perl 5.6.0 say "use vars ' $AUTOLOAD ;"
use Carp;

O ass data and nethods, that refer to the collection of all objects
in the class, not just one specific object

{
ny $_count = O;
sub get count {
$_count;
}
sub _incr_count {
++$_count;
}
sub _decr_count {
--$ _count;
}
}

The constructor for the class
sub new {

ny ($class, %arg) = @;
ny $self = bless {

__namne => S$ar g{ nane} || croak("Error: no nane"),
_organi sm => $arg{organisn}t || croak("Error: no organisni),
_chronosone => $arg{chronmosone}|| "????"
_pdbr ef => $ar g{pdbref} || "??2?2?"
_aut hor => S$ar g{aut hor} || "????"
_date => $ar g{dat e} || "????"

}, $class;

$class-> incr_count();
return $self;

}

This takes the place of such accessor definitions as:
sub get_attribute { ... }

and of such nutator definitions as:

sub set_attribute { ... }

sub AUTOLQAD {
ny ($self, $newalue) = @;

ny ($operation, $attribute) = (SAUTCLOAD =~ /(get]|set)(_\w+)$/);

|ls this a | egal nethod nane?

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.9How AUTOLOAD Works

The AUTOL OAD mechanism, built into the definition of Perl packages, issmpleto use. If a subroutine named
AUTOLOAD isdeclared within apackage, it is called whenever an undefined subroutine is called within the
package. AUTOLOAD isaspecia name, and must be capitalized as shown, because Perl is designed that way.
Don't use the subroutine name AUTOLOAD (or DESTRQY) for any other purpose, or you'll suffer unintended
consequences.

Without an AUTOL OAD subroutine defined in a package, an attempt to call some undefined subroutine smply
produces an error when the program runs. But if an AUTOLOAD subroutineis defined, it iscalled instead and is

passed the arguments of the undefined subroutine. At the sametime, the BAUTOLOAD varigbleis set to the name of

the undefined subroutine.

Here's an example of ashort Perl program thet triesto call an undefined function:
#!/usr/bin/ perl

use strict;
use war ni ngs;

print "I started the programn";
report _protein_function("one", "two");
print "I got to the end of the program n”;

It givesthefollowing output:
| started the program
Undefi ned subroutine &main::report_protein_function called at jk.pl Iine 8.

Hereswhat happens when an AUTOL OAD subroutine is defined in the package:
#!/ usr/bin/ perl

use strict;
use war ni ngs;
use vars ' SAUTOLOAD ;

print "I started the programn";
report _protein_function("one", "two");
print "I got to the end of the programn";

sub AUTOLQAD {
print "AUTOLOAD is set to $AUTOLOAD\ n";
print "with argunents ", "@\n";

}

It givesthefollowing output:

| started the program
AUTOLOAD is set to main::report_protein_function
with argunments one two

| got to the end of the program

3.9.1 Defining Global Variables

Recall that when vou Sart noroorams with 9ich gatements as

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.10 Cleaning Up Unused Objectswith DESTROY

When arunning program no longer needs a portion of computer memory, what happensto it? How isthe program's
memory managed? Various possihilities exist, and different languages handle the problem in different ways. For
ingtance, the designer of the language can just leave the memory asit is, unused, and go on and use other memory for
other tasks. No clean up is gtrictly necessary.

However, this might, and does, cause problemswith certain kinds of programs. Some programsread in large
amounts of dataiinto their memory, perhaps extract some statistics on the data, and then go on to the next large
chunk of datato repesat the same operation. A computer's memory isfinite; for aprogram that runsalong time and
examines a continuous source of data (say, for instance, the data generated by your sequencing facility), it will at
some point usedl available main memory.

It is necessary to consider how to clean up memory that isno longer used, so it can be reused by the program. Thisis
sometimes called the garbage collection problem. Consideration of this problem has resulted in many approaches
and alarge amount of literature, which won't be discussed here.

However, sometimes there are practical considerations. In the class module Gene.pm, I'm keeping count of dl
objectsthat are created by the running program. In Perl, when avariableis no longer used, itsmemory is
automaticaly cleaned up. One such ingtance iswhen avariable goes out of scope. For instance, in the following code
fragment, the variable $i goes out of scope after theif block, and its memory is cleaned up, making it availableto the
rest of the program:
if(1) {
ny $i = ' ACCGBCCGGCCGGTTAATGCATAATC ;
det ermi ne_function($i);

}

$i has gone out of scope here

This problem actually affects the Gene.pm module. Say you create anew object, and as the program continues, the
object goes out of scope. For instance, if the object was created within ablock, and the program leaves the block,
the object isthen out of scope. Perl will remove the part of memory that held the object, and al will bewell... except
that the globa count of the number of objectswill now be off by onel!

What is needed isaway to automatically call abit of code to adjust the globa count whenever an object goes out of
scope. Perl provides such amechanism with the DESTROY subroutine. Perl callsthe DESTROY method 1) if
you've defined amethod with that name in your class, and 2) aclass object (areference blessed with the name of the
class) goes out of scope. It does so automaticaly, just as AUTOLOAD isautomatically caled if you attempt to call a
method that doesn't exist on a class object.

In our program, the only thing keeping track of when an object goes out of scope and is garbage collected by Perl is
the globd count of existing objects. Thisample DESTROY subroutine will thus suffice:
sub DESTROY {

ny($self) = @;
$sel f-> decr_count();

}

Let'sseeif it works. Heré's atest program, testGeneGC (GC for garbage collection):
#!/usr/bin/ perl

4L

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.11 Gene.pm: A Fourth Example of a Per| Class

Weve now come to the fourth and find verson of the Gene class, Gene.pm. Thisfind verson addsafew morebdls
and whistles to make the code more rdliable and useful. Y ou'll see how to define the class attributesin such away as
to specify the operations that are permitted on them, thus enforcing more discipline in how the class can be used.
You'll dso see how to initialize an object with class defaults or clone an already existing object. Y ou'll seethe
standard and smple way in which the documentation for a class can be incorporated into the .pm file. Thiswill
conclude my introduction to OO Perl programming (but check out the exercises at the end of the chapter and see
later chapters of thisbook for more ideas).

3.11.1 Building Gene.pm

Here then isthe code for Gene.pm. Again, | recommend that you take the time to read this code and compareit to
the previous version, Gene3.pm, before continuing with the discussion that follows:
package Cene;

#
A fourth and final version of the Gene.pm cl ass
#

use strict;

use war ni ngs;

our $AUTOLOAD; # before Perl 5.6.0 say "use vars '$AUTOLQOAD ;'
use Carp;

C ass data and net hods
Alist of all attributes with default values and read/wite/required properties

ny %attribute_properties = (
_nane = ['????", "read.required'],

_organi sm = ['????", "read.required'],
_chronbsone => ['????", "read.wite'],
_pdbr ef = ['?2?7??", "read.wite'],
_aut hor = ['?2?7??", "read.wite'],
_date = ['?2?7??", "read.wite'],

)

d obal variable to keep count of existing objects
ny $ count = O;

Return a list of all attributes
sub _all _attributes {

keys % attri bute_properties;
}

Check if a given property is set for a given attribute
sub _perm ssions {

my($sel f, S$attribute, $pernissions) = @;

$ _attribute_properties{$attribute}[1] =~ /$permni ssions/;
}

Return the default value for a given attribute
sub _attribute default {
ny($sel f, $attribute) = @;
$ attribute_properties{$attribute}[0];
}

Manage the count of existing objects
sub get count {
$_count;

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.12 How to Document a Per| Class with POD

An essentid part of programming is documentation. Comments in the code are an important part of documenting
code for those who have to read it or modify it in the future.

Equdly asimportant is documentation for those who have to use the code. A short, accurate, practical guide to using
aPerl dassisabsolutdy necessary in order for the classto be generdly useful.

Perl uses alanguage called POD (plain old documentation) to put documentation right in the code. The fourth and
find verson of Gene.pm has POD documentation embedded in it.

To gain access to the documentation, you merely haveto type:
perl doc Gene. pm

in the same directory in which the Gene.pm lives. (For other options, see the perlpod manpage on the Web, or type
perldoc perlpod.)

Given that thisbook contains copious amounts of explanation of the code, I've kept the POD documentation to a
minimum. The POD language is smple; the best way to useit to write good documentation isto copy and modify the
documentation style that's used by some other well-written module. Y ou will amost dwayswant to give abit more
information than the example shown here; try examining the documentation for some Perl modules on your compuiter,
for example, perldoc CGl or, if it'singalled, perldoc Bioperl.

The Perl interpreter will ignore everything from aline beginning:
=headl

up to aline beginning:

=cut

S0 you can embed your POD documentation in with your Perl code without difficulty.

It'saso worth pointing out that many filters exist that will take your .pm file with its embedded POD documentation
and produce versions of the documentation in HTML, LaTEX, plain text, nroff, or other formats.

Her€'s the output you get from typing perldoc Gene.pm:
Gene(3) User Contributed Perl Docurentation Gene(3)

Cene
CGene: objects for Genes with a m nimum set of attributes

Synopsi s
use Cene;

ny $genel = Gene- >new(

name => ' bi ggene',
organism => 'Mis nuscul us',
chronosonme => '2p',

pdbr ef => ' pdb5775. ent"',

aut hor => 'L. G Jeho',

PN I T, U ~ o~ Pl aYeTall

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

3.13 Additional Topics

Included in this section are afew more topics you may find useful.

3.13.1 Using Class:: Struct to Define Classes

The kind of smple OO classthat I've devel oped in this chapter has proved so useful that some clever folks have
written a Perl module Class:: Struct that automates the construction of classes of thistype.

It'sworth examining Class::Struct because it can be a great timesaver for some Situations. It's been used to creste
classesfor many widely used modules. Type:

perl doc O ass:: Struct

to get thewhole story.

3.13.2 Class Inheritance

Animportant part of OO programming dedls with the use of one classto help define another. For instance, you may
have a class Protein that defines attributes common to al proteins. Y ou can then use the Protein class to define anew

class ZincFingers, which perhaps would have al the attributes of the Protein class plus some additiona attributes
relevant to the study of zinc fingers.

You'l seethe use of classinheritance in the next chapter.

3.13.3 Bioperl

Bioperl isacollection of modules of intense interest to the Perl bioinformatics programmer, written mostly in OO
syle. I'll take alook &t the Bioperl softwarein Chapter 9.

[TeamLiB] e

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

3.14 Resour ces

A vast number of techniques are used in OO software development in Perl; many more than | have space to explore
in this book. For more details than can fit into this book, | recommend these sources for more details on OO
programming in Perl.

[TeamLiB]

Object Oriented Perl by Damian Conway (Manning Publishers). Thisisan excellent book and is useful for
beginnersto advanced. It even includes afew bioinformatics examples! My introduction to OO Perl has
drawn gratefully on Conway's book. | urge readerswho will be doing further OO Perl programming to get a
copy. Some materia isdightly dated; for example, the material on pseudohashes should be skipped.

The perlobj page from the Perl documentation.

The perlboot tutoria page from the Perl documentation is a beginning introduction to Perl objects.

The perltoot tutorid page from the Perl documentation isamore detailed introduction to Perl objects.

The perltootc tutorid page from the Perl documentation aso includes more information on class methods.

The perlbot tutoria page from the Perl documentation isabag of tricks for Perl OO programming.

Some books aready mentioned in earlier chapters have extensive information about Perl OO programming,
such as Programming Perl, Perl Cookbook, and Advanced Perl Programming.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

3.15 Exercises
Exercise 3.1

Write brief descriptions of the main features of declarative programming, OO programming, logic programming, and
functiona programming. (See Section 3.14.)
Exercise 3.2

Give an example of aprogramming job that would be better with OO programming than with declarative

programming.
Exercise 3.3

Give an example of aprogramming job that would be better with declarative programming than with OO

programming.
Exercise 3.4

What bioinformatics problem might be best addressed with logic programming?
Exercise 3.5

Download and use a Perl classfrom CPAN.
Exercise 3.6

Write a Perl classthat manages [aboratory supplies.
Exercise 3.7

When would you want a separate initidization method for a class, when would you want the initidization to be part of
the new congtructor?
Exercise 3.8

Modify Gene.pm to keep count of how many objectsrefer to given organisms, chromosomes, authors, pdb
references, and names.
Exercise 3.9

Add aDESTROY method to aclass so an object can salf-destruct.
Exercise 3.10

Beginning in the code for Gene3.pm you'l find the following regular expression:
i f ($AUTOLOAD =~ /. *(_\w+)/) {
$attribute = $1;

Thisonly catchesthe last part of aname that has an underscore. What if you want to alow names such as
get_other_var? Write aregular expression that would extract such names as other_var from get_other_var.
Exercise3.11

In the code for Gene2.pm you'l find the following regular mutator method:

sub set _nane {
ny ($self, $nane) = @;
$sel f->{ nane} = $nane if $nane;

}

Thisbreaksif $name has certain values such as"", 0, or OEQ. How can you catch these cases?

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] e
Chapter 4. Sequence Formats and I nheritance

This chapter applies concepts and techniques from previous chapters to a concrete project: handling sequencefiles.
The chapter also introduces afew new techniquesincluding avery important one caled classinheritance. The code
developed in this chapter will also be incorporated into later chapters.

Classinheritance alows you to define anew class by inheriting from other classes—altering or making additions as
needed. It'sastyle of software reusethat is particular to object-oriented design.

Thefirg class developed in this chapter isasmple one: reading and writing files. Using inheritance, you can extend
that classto anew onethat can recognize, read, and write datain severa different biological sequence datafile
formats.

Thegod is, asaways, to learn enough about Perl to devel op software for your own needs. The code in this chapter
isdesgned with thisgod inmind. In particular, the exercises a the end of the chapter will ask you to extend and
improve the code in various ways.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

4.1 Inheritance

Y ou've seen the use of modules and how aPerl program can use all the code in amodule by smply loading it with
the use command. Thisisasmple and powerful method of software reuse, by which software can be written once
but used many times by different programs.

Y ou've also seen how object-oriented Perl defines classesin terms of modules, and how the use of classes, methods,
and objects provides amore structured way to reuse Perl software.

There's another way to reuse Perl classes. It's possible for aclassto inherit al the code and definitions of another
base class. (This base classis sometimes called asuperclass or a parent class.)) The new derived class (ak.a
subclass) can add more definitions or redefine certain definitions. Perl then automatically uses the definitions of
everything in the old class (but treats them asif they were defined in this new derived class), unlessit finds them first
in the derived class,

In this chapter, I'll first develop aclass Filel O.pm, and then use the technique of inheritance to develop another class
SegFilel O.pm that inherits from FilelO.pm. Thisway of reusing software by inheritance is extremely convenient when
writing object-oriented software. For ingtance, | make SegFilelO do alot of itswork smply by inheriting the base
class FilelO and then adding methods that handle sequence file formats. | could use the same base classFilelO to
write anew classthat speciaizesin handling HTML files, microarray datafiles, SNP database files, and so on. (See
the exercises a the end of the chapter.)

When inheriting aclass, it is sometimes necessary to do abit more than just add new methods. In the SegFilelO
class, | add some attributes to the object, and as aresult the hash % _attribute properties also hasto be changed. So
inthe new class| define anew hash with that name, and as aresult the old definition from the base classis forgotten
and the new, redefined hash is used. Asyou read the new class, compare it with the base class Filel O. Make note of
what is new in the class (e.g., the various put methods), what is being redefined from the base class (e.g., the hash
just mentioned), and what is being inherited from the base class (e.g., the new constructor.) This can help prepare
you to write your own classthat usesinheritance.

Occasiondly, you want to invoke a method from a base class that has been overridden. Y ou can use the specia
SUPER classfor that purpose. | don't usethat in the code for this chapter, but you should be aware that it is possible
to do.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

4.2 FilelO.pm: A Classto Read and Write Files

Even though you can easly obtain excellent modulesfor reading and writing files, this chapter shows you how to build
asmple one from scratch. One reason for doing thisis to better understand the issues every bioinformatics
programmer needs to face, such as how to organize files and keep track of their contents. Another reason is so you
can see how to extend the class to dedl with the multiple file format problem that is peculiar to bioinformatics.

It's not uncommon for abiologist to use saverd different types of formats of files containing DNA or protein
sequence data and trand ate from one format to another. Doing these trandations by hand is very tedious. It'salso
tedious to save dternate forms of the same sequence datain differently formatted files. Y ou'll see how to aleviate
some of this pain by automating some of these tasksin anew class called SegFilel O.pm.

Classinheritance is one of the main reasons why object-oriented software is so reusable. In order to see clearly how
it works, let's start with the smple class FilelO.pm and later useit to define amore complex class, SegFilel O.pm.

FlelOisasmple classthat reads and writesfiles, and stores smple information such asthe file contents, date, and
write permissons,

Y ou know that it's often possible to modify existing code to create your own program. When | wrote FilelO.pm, |
smply made acopy of the Gene.pm module from Chapter 3 and modified it.

Onmy Linux system, | started by copying Filel O.pm from Gene.pm and giving it anew name:
cp Gene.pmFilel O pm

| then edited the new file FilelO.pm changing the line near the top that says.
package Cene;

to:
package FilelQ

Thefilename must be the same as the class name, with an additiond .pm.

Though | now needed to modify the module to do what | want, asurprising amount of the overal framework of the
code—its congtructor, accessor and mutator methods, and its basic data structures—remains the same. Gene.pm
already contained such useful parts as anew constructor, a hash-based object data structure, accessor methods to
retrieve vaues of the attributes of the object, and mutator methods to dter attribute vaues. These arelikely to be
needed by most classesthat you'll write in your own software projects.

4.2.1 Analysis of FilelO

Following isthe codefor FilelO, with commentary interspersed:
package FilelQ

#

A sinple 10 class for sequence data files
#

use strict:

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

4.3 SeqFilel O.pm: Sequence File Formats

Our primary interest is bioinformatics.Can we extend the Filel O classto handle biologica sequence datefiles? For
example, can aclass be written that takes a GenBank file and writes the sequence out in FASTA format?

Using the technique of inheritance, in this section | present amodule for anew class SeqFilel O that performs severd
basi ¢ functions on sequencefiles of variousformats. When you call this modul€e's read method, in addition to reading
the file's contents and setting the name, date, and write mode of thefile, it automatically determines the formeat of the
sequencefile, extracts the sequence, and when available, extracts the annotation, 1D, and on number. In
addition, aset of put methods makesit easy to present the sequence and annotation in other formats.[1]

[1] Don Gilbert's readseq package (see http://iobio.bio.indiana.edu/soft/molbio/readseq and
ftp://ftp.bio.indiana.eduw/mol bio/readseg/classic/sic) isthe classic program (written in C) for reading and writing
multiple sequencefileformats.

4.3.1 Analysis of SegFilel O.pm

Thefirst part of the module SegFilel O.pm contains the block with definitions of the new, or revised, class data and
methods.

Thefirg thing you should natice is the use command:
use base ("Filel O);

This Perl command tellsthe current package SegFilel O it'sinheriting from the base class Filel O. Here's another
Statement that's often used for this purpose:
@SA = ("FilelO);

The @I SA predefined variabletells apackagethat it "isd' version of some base class; it then can inherit methods
from that base class. The use base directive setsthe @I SA array to the base clasg(es), plus alittle else besides.
(Check perldoc base for the whole story.) Without getting bogged down in details use base works alittle more
robustly than just setting the @I SA array, so that'swhat I'll use here;

package SegFilel O

use base ("Filel O);

use strict;

use war ni ngs;

#use vars ' SAUTOLOAD ;
use Carp;

Cl ass data and net hods
{
Alist of all attributes with defaults and read/wite/required/noinit properties
ny %attribute_properties = (
_fil enane = [', ‘read.wite.required],

_filedata = [[], 'read.wite.noinit'],
_date = [', ‘read.wite.noinit'],
_witenode =] '>, ‘'read.wite.noinit'],
_format = ["' ‘"read.wite'],
_sequence = [‘"read.wite'],
_header = [‘"read.wite'],
_id = [‘"read.wite'],
[

_accession => ‘"read.wite'],

http://iobio.bio.indiana.edu/soft/molbio/readseq
ftp://ftp.bio.indiana.edu/molbio/readseq/classic/src
http://www.perdoc.com/default.htm
http://iobio.bio.indiana.edu/soft/molbio/readseq
ftp://ftp.bio.indiana.edu/molbio/readseq/classic/src
http://www.perdoc.com

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

4.4 Resources

Inheritance is afundamental OO technique; see Section 3.14 for Perl OO reference materia that includes
discusson of inheritance.

For programming with sequence data file formats, see the C program readseq by Don Gilbert (at
http://iobio.bio.indiana.edu/soft/mol bio/readseq).

Seethe Bioper] project at http://www.bioperl.org for dternate waysto handle this programming task in Perl.

For amore rigorous but dower approach to parsing sequence files (which is sometimes what you want) see
the module Parse::RecDescent by Damien Conway at CPAN.

Each sequence file format has documentation that describes it. These formats sometimes change to keep up
with the changing nature of biologica data. One of the following exercises chalenges you to find the
documentation for one of the formats and to improve the code in this chapter for that format.

[TeamLiB]

http://iobio.bio.indiana.edu/soft/molbio/readseq
http://www.bioperl.org/default.htm
http://iobio.bio.indiana.edu/soft/molbio/readseq
http://www.bioperl.org

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

4.5 Exercises
Exercise4.1

Write an object-oriented module DNA sequence whose object has one attribute, a sequence of DNA, and two
methods, get_dnaand set_dna. Start with the code for Gene.pm, but see how far you can whittle it down to the
minimum amount of code necessary to implement thisnew class.

Exercise 4.2

The FilelO.pm module implements objects that read and write file data. However, they can, depending on the
program, deviate substantialy from what are actualy present in files on your computer. For instance, you can read in
al thefilesin afolder, and then change the filenames and data of dl the objects, without writing them out. Isthisa
good thing or abad thing?

Exercise 4.3

In the text, you are asked why the new constructor for FilelO.pm has been whittled down to the bare bones. Y ou
can seethat al it doesis create an empty object. What functionaity has been moved out of the new constructor and
into the read and write methods? Does it make more sense to do without a new constructor entirely and instead have
the read and write methods create objects? Try rewriting the code that way. Alternately, doesit make senseto try
rewriting the code o that both reading and writing are handled by the new constructor? Is creating an object
sometimeslogicdly diginct frominitidizingit?

Exercise4.4

Use FilelO.pm as abase class for anew class that manages the annotation of a pipeline in your laboratory. For
example, perhaps your lab gets sequence from your ABI machine, screensit for vectors, assessesthe quality of the
sequencing run, searches your loca database to determineif you've seen it or something like it before, then searches
GenBank to see what other known sequencesit matches or resembles, and finaly addsit to an assembly project.
Each step has a person or persons, atimestamp for the beginning and ending of each phase, and data. Y ou want to
be able to track the work done on each sequence that emerges from your ABI. (Thisisjust an example. Pick a set of
jobsthat you actudly do in your lab.)

Exercise 4.5

For each sequencefile format handled by the SegFilel O.pm module, find the documentation that specifies the format.
Compare the documentation with theis _, parse , and put_ method to recognize, read, and write filesin each format.
How can you improve this code? Make it more complete? Faster?

Exercise 4.6

My parse_methods are somewhat ad hoc. They don't redlly parse the whole file according to the definition of the
format. They just extract the sequence and asmall amount of annotation. Take one of the formats and write amore
complete parser for it. What are the advantages and disadvantages of asimple versus a more complete parser in this
code? How about for other gpplications you may want to develop in the future?

Exercise 4.7

Use the parser you devel oped in Exercise 4.6 to do amore complete job of identifying afilein the sameformat in the
modulesis _method.
Exercise 4.8

Add anew sequencefile format to SegFilel O.
Exercise 4.9

In FlelO.pm, and in many other placesin thisbook, the program calls croak and exits when a problem arises (such
as when unsuccessfully attempting to open afile for reading). Such drastic measures are sometimes desirable; for
example, you may want to kill the program if a security problem is discovered in which someoneis attempting to read
aforbidden file. Or, when developing software, you may like your program to print an informative message and die
when a problem occurs, asthat might help you develop the program faster.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 5. A Classfor Restriction Enzymes

In this chapter, you'll learn how to write an object-oriented class that handles restriction enzymes using the modules
from the previous chapter as part of an interface to the Restriction Enzyme Database (Rebase). I'll develop aclass
that finds redtriction sitesin DNA sequence data. In my book Beginning Perl for Bioinformatics, | presented code
that extracts information from Rebase and usesit to make restriction maps of DNA sequence data. In this chapter, I'll
adapt and extend that software (or ideas from the accompanying exercises) in an object-oriented fashion. (All codeis
shown here and is available from this book's web site))

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot
5.1 Envisioning an Object

The Rebase project provides a set of filesthat specify restriction enzymes, their cut Stes, and agreat deal more
information. Congder the problem of designing an object-oriented version of code that usesthis data. What will be
the objects and the methods?

Each redtriction enzyme has aname; associated with its name are the definition of itsrecognition site (which I'll
trandate into a Perl regular expression), information about the chemistry of the regtriction enzyme, vendors of the
enzyme, and other annotation. Thisinformationisal part of the Rebase database.

Perhaps | should consider each restriction enzyme as a suitable candidate for my basic object. | can then read in the
Rebase database, creating objects for each restriction enzyme that includes such attributes as the recognition site, the
trandation of the recognition siteinto a Perl regular expression, and whatever additiona annotation | find useful.

With such objects, | can associate methods that take as their arguments sequence data and return the list of locations
in which that particular enzyme has arecognition sitein the sequence. Sounds good, let's start coding!

But wait. What happensif, asis often the case, you want to find multiple restriction enzymesin a sequence and
display the resulting map. With my design, you'd have to find the object associated with each restriction enzyme, pass
it to the sequence, collect the locations, and then combinetheindividua lists of locationsin order to display the map.
Thiscan be dow (finding the right objects, one for each redtriction enzyme) and inconvenient (combining the output of
the various methods from the various objects).

Y ou recognize this questioning as an essentia step in program design—thinking about the problem and considering
alternative waysto write code that solveit. | reprise the idea here because, so far, I've been smply seeing and
discussing solutions. Although it's neet and tidy, it isn't redly the way programming works. Programming often
involvesthinking of aternative program strategies, comparing them, coding the most promising dternatives as
prototypes and testing them (i.e., benchmarking), and finally deciding on an approach to implement.

So, inthat spirit, what aternatives come to mind to the one enzyme/one object approach just described? The Rebase
database is essentidly akey/value lookup database, in which the key isthe enzyme name. The vaue isthe recognition
Steor annotation: actudly there are severa datafiles provided in the database. But I'm most interested in getting the
recognition Site, trandating it to a Perl regular expression, and reporting on the locations in some sequence data. A
nice interface to digplay some of the annotation of the restriction enzyme would a so be useful.

Any key/value type of dataimmediately brings the hash data structure to the mind of the Perl programmer. Asyou
know from my introduction to object-oriented programming, the hash data structure is aso the most useful way to
implement an object.

So, perhapsinstead of many objects, one for each restriction enzyme, you may want to consider one object that
providesthe fast lookup of avaue (the recognition site and regular expression) for each key (the name of the
regtriction enzyme). Clearly, this can be implemented as a hash. Other attributes can hold the sequence and the map
asan array of the positionsin the sequence in which the recognition sites exist. Methods for the object could extract
the gite, the regular expression, and perhaps some annotation, for each enzyme. A method can aso locate the
recognition sitesfor an enzyme in the sequence.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

5.2 Rebase.pm: A ClassModule

Hereisavery smpleinterface to the Rebase data contained in the bionet file that is part of its distribution:
package Rebase;

#

A sinple class to provide access to restriction enzyne data from Rebase
including regular expression translations of recognition sites

#

use strict;
use war ni ngs;
use Carp;

use DB Fil e;

C ass data and net hods

{
A hash of all attributes with default val ues
ny %attributes = (
_rebase = { },
key = restriction enzyme nane
val ue = space-separated string of sites => regul ar expressions
_bionetfile =>"'2?",
_dbnfile = '?2?",
_node => 0444,
)
Return a list of all attributes
sub _all _attributes {
keys % attributes;
}
Return the value of an attribute
sub _attribute val ue {
ny($sel f, $attribute) = @;
$_attributes{$attribute};
}
}

Notice that the opening block is considerably pared down, compared to earlier classes. For instance, I've tossed the
code that keeps count of all objects. Why? Becauseit's unlikely that more than one of these objectswill be necessary
in aprogram: so why bother?

5.2.1 Attributes: Short and Sweset

Noticethat thelis of attributesis short:
_rebase

A hash that will be populated to provide the lookup, with enzyme namesfor keys, and recognition sites (and their
trandation to regular expressions) for values. (Make sure you see how in the hash % _attributes the vaue of the key
_rebaseisitsaf an anonymous hash.)

_bionetfile

The name of the datafile from the Rebase ditribution. In my examples, | use the verson numbered bionet.212, and
by the time you reed this book, more recent versions will be available (you can get bionet.212 from this book's web
gte).

_domfile

http://rebase.neb.com

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot
5.3 Restriction.pm: Finding Recognition Sites

Thetime has now come to write the class that creates an object out of asequence, enzyme name(s), and the map of
the location(s) of the enzyme recognition Sitesin the sequence.

Thismodule depends a great dedl on the module Rebase developed in the previous section, but it isfairly short
becauseit just triesto do asmal job. This new Restriction class takes a Rebase object (which hasthe Rebase
database trandated to regular expressions), some sequence, and alist of enzymes, and usesthe regular expressions
to find the recognition sitesin the sequence. (Note that it doesn't use inheritance; it Smply creates a Rebase object to
use)

In thismodule, the restriction map (the list of locations where the enzymes have recognition sitesin the sequence) is
obtained through an auxiliary method map_enzymethat smply liststhe locations. Clearly, amore graphica display
would be easier and more useful. I'll consider that as the book progresses.

5.3.1 The Restriction.pm Module

Hereisthe Redtriction.pm module:
package Restriction

#

A class to find |l ocations of restriction enzyne recognition sites in
DNA sequence dat a.

#

use strict;
use war ni ngs;
use Carp;

Cl ass data and net hods
{
Alist of all attributes with default val ues.
"enzyme" is given as an argunent possibly multiple tinme, set as key to _map hash
ny %attributes = (

_rebase = { }, # A Rebase.pm hash-based obj ect
key = restriction enzyne nane
val ue = space-separated string of recognition sites => regul ar expressions
_sequence => "', # DNA sequence data in raw format (only bases)
_map => { },# a hash: keys are enzyme nanes
values are arrays of |ocations
_enzynme => '', # space- or comma-separated enzyne nanes,
set as key to _map hash

)

d obal variable to keep count of existing objects
nmy $_count = O;

Return a list of all attributes
sub _all _attributes {
keys % attri butes;

}

Manage the count of existing objects
sub get _count {
$_count;

}

sub _incr _count {

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

5.4 Drawing Restriction Maps

One of the most important lessons of scientific programming is the importance of agood display of aprogram's
results.

In this section, I'm going to add the ability to output arestriction map by inheriting Restriction.pm and making anew
derived class Regtrictionmap.pm. The restriction map will be shown very smply asthe sequence printed in lines of
ampletext. Thelocations of restriction Stes are written over thelines of text, giving the names of theredtriction
enzymes at the redtriction sites. In Chapter 8, this smple text-based graphic output is replaced by ared picture (with
colors, different fonts, and whatever bells and whistles you choose to add). | designed my base class Restriction.pm
to represent the restriction map asasimplelist of recognition site locations because | wanted my software to be
flexible enough to be extended to accommodate any of the many different graphic formats that might be desired.

The difference between an unreadable mass of data, and agood clean graphic display that leads the eye towards an
interesting result, is profound. It's the difference between a successful program and adud, between hours or days
spent sorting through columns of data and a quick discovery of aregion of interest. It's even the difference between a
scientific discovery, and noneat dl.

Graphics programming isabit of an advanced topic. (Y oull get your feet wet in Chapter 8.) But evenif you need a
program that's restricted to text output, you still need to spend programming time displaying that output in auseful
manner. So, in this section, I'll add avery smple map drawing capability to the software, drawn as Smpletext.

5.4.1 Storing Graphics Output in an Attribute

| want to display agraphic. Do | needto add _graphic and _graphictype attributes to my object? The question boils
downto: shdl | compute and display a graphic whenever needed, or shal | compute agraphic and Soreitinan
attribute? If you're new to computer graphics, just think of a graphic asamass of data, which can be storedina
variable, or in afile on disk, and can be used to generate agraphical display on the computer screen by theright
software.

| do dready compute the restriction map, by which I mean the actual locations of the recognition Sitesfor each
enzyme requested, and stored it inthe _map attribute. | can also compute agraphic at the sametime and storeitin
the proposed _graphic attribute.

Let'sthink about the pluses and minuses of storing graphics output in an attribute.

I'm not sure which graphics system I'll usein the future; for now, asmple text output may work as astored attribute,
but there are alot of graphics outputs possible. Also, it seemslikely that I'll be able to compute the graphics output
very quickly, so the need for storing it isless compelling. And storing alarge image for possibly hundreds or
thousands of objectswill be a strain on the computer system.

However, | may not be able to caculate quickly for fancier, full color, high resolution graphicsthat | might want in the
future. And perhaps I'll need to flip between graphics very quickly, in which case having them preca culated would be
anecessity!

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

5.5 Resources

The primary resource for this section isthe Restriction Enzyme Database web site found at
http://mww.neb.com/rebase.

Seethe discussion of making restriction mapsin O'Rellly's Beginning Perl for Bioinformatics.

[TeamLiB]

http://www.neb.com/rebase
http://www.neb.com/rebase

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

5.6 Exercises
Exercise 5.1

Why use the object-oriented approach for the interface to the Rebase database at all? What are the benefits and
detriments of going to the object-oriented style?
Exercise 5.2

The Restriction.pm module uses another modulein anew way. Instead of inheriting the Rebase.pm class, it requires
that a Rebase object be passed to the constructor Restriction->new to become one of the attributes of the
Restriction object.

Consder dternative waysto write this code. Can Restriction inherit Rebase and achieve the same functiondity? If so,
write the code. Or, can the same functionaity be achieved by some method that avoids having a Rebase object
passed as an argument to a Restriction object? If so, write the code.

Exercise5.3

Go to CPAN and read the documentation about the MLDBM module. It allows you to useaDBM fileto store and
retrieve complex data. Rewrite the Rebase.pm module to use MLDBM and replace my use of space-separated
strings of recognition sites and regular expressions.

Exercise 5.4

Asdiscussed in the text, there are some interesting consderationsinvolved in parsing the data that relates to how the
restriction enzymes actudly work, such as handling reverse complements of recognition sitesand cut Sites. Thelogic
used here to handle reverse complements might not be ided for dl Stuations. Review carefully thelogic of the
parse_rebase subroutine. Can you find any problemsitslogic might cause when you try to use the software to
support a particular experiment?

Exercise5.5

It would be nice to be able to ask some method in Restriction.pm if aparticular restriction enzyme produces sticky
endsat itscut Ste. It would aso be useful to know what other enzymes creste sticky ends that will annedl with the
sticky ends of thisenzyme. Check to seeif thisinformation gppearsin any of the datafiles of the Rebase database.
Can you design amethod that returns thisinformation, given the name of arestriction enzyme? What changes do you
have to make to your database; do you need any more datafiles from the Rebase distribution?

Exercise 5.6

Describein detail how thelogic for map_enzyme works. Can you devise adifferent way to accomplish the same
thing?
Exercise 5.7

The codein this chapter uses the class Redtriction as abase class for the class Restrictionmap which lets you make a
graphic display of the restriction map. Would it be abetter ideajust to add the graphics capabilities to the Redtriction
classingtead of inheriting it into anew class? Rewrite Restriction to add the graphics capability toit. What arethe
pros and cons of these two different ways of writing and organizing the code?

Exercise5.8

In the method _formatrestrictionmap, some lines of code are commented out that shorten the output by not printing
extrablank lines. Try it out both ways. (And may God have mercy on your souls.) Do you think it makes the output
lesslengthy at the expense of making it more difficult to read? What isthe tradeoff here? Do you prefer the longer or
shorter verson? Defend your preference.

Exercise 5.9

Add position numbersto the output of Restrictionmap. Add the position of thefirst basein each line or the position of
each redriction enzyme.
Exercise 5.10

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

| TeamLiB | MEXT k

Part |1: Perl and Bioinfor matics

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Chapter 6. Perl and Relational Databases

Relationa database sysems are extremely important in al kinds of computing—commercia aswell as scientific. The
Perl programmer can perform most database manipulations from Perl programs usng modules written for this
purpose. I'll briefly review database |ore and then concentrate on an introduction to the Perl modulesthat provide an
interface to relationa databases.

Thisand the remaining chapters of thisbook will continueto ook at fundamenta Perl topics but with this difference:
these topics rely on Perl modules, not on new Perl syntax. The reason for thisis a ddiberate decision by the Perl
language designersto keep the language itself fairly smal and to move as much functiondity as possible into modules.
Thisdecisonisinteresting and important, and it hasthe practica effect of making modules quite important in Perl.

Firg, I'll provide aquick explanation of database terminology and acronyms. Since I'll be discussing only relationd
databases, | sometimes say database to mean relaiona database. (They aren't synonymousin general, however.) |
say DBMS (or database management system(s)) to refer to the software that provides database capabilities, such as
MySQL or Oracle. Database or relationa database refers to the definition and implementation of aparticular
collection of datainaDBMS, such asthe examples| show later in the chapter. These terms, database for the data
itself, and database management system for the software system that handles the data, are often used informally and
interchangeebly, and it'susualy clear what is meant.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

6.1 One Perl, Many Databases

There comes atime when disk files or the smple DBM hash database (that you've seen in previous chapters) just
won't manage the data of a medium- or large-size project, and you must turn to relational databases. Although they
take quite a bit more effort to set up and to program, they offer a standard and reliable way to store dataand to ask
questions abot it.

There are two things that make relationa databases standard. For one thing, they al follow a certain model of data
sructures, the relational model. These data structures have become afixture in the computing world; they combine a
level of condraint and flexibility that has proved its usefulnessin many arees, including bioinformatics.

Almogt dl relationa databases are programmed with a programming language called the Structured Query Language,
or SQL. Thisisafarly smple language that creates, populates, queries, and managesthe kind of data structures
relationd databases provide. The combination of astandard data structure with a standard programming languageis
another reason relationa databases have become so successful.

Onething that's not standard isthe proliferation of relational database companies and their penchant for doing things
their own way. This may sometimes be amarketing decision, but it's more often the natural process of evol ution—of
different sets of programmers having different ideas and making different implementations.[1]

[1] When | first released software that used Perl for bioinformatics, | recelved aletter arguing that because C was
available everywhere and Perl wasn't, Perl for bioinformatics was therefore aBad Ideaand | should use C instead.
Of course, Perl isavailable everywhere now, including on the VM S systems that my correspondent was complaining
about, and bioinformatics software iswritten in avariety of languages. He made the classic mistake of wanting to
sandardize afield long before it had settled down.

Thisisimportant when you have some working database application that uses a particular DBMS such as Oracle,
and you find that you have to port the application to work on another DBM S such as MySQL .. Perhaps another
database system has become significantly faster or cheaper, or your computer is replaced with anew one that
supports adifferent database, or your computer center or ClO decrees that some new DBMS is now the mandatory
standard. If your database gpplication makes extensve use of afeature that isavailable only on your old DBMS,
you'l have alot of work ahead of you rewriting your software to make it work on the new DBMS.

Luckily, thanks to some expert Perl programming, thereisaway to get around this proliferation of different DBMS
with their specid ways of doing things and their specid extensons of SQL. In this chapter, I'll use the Perl DBI
(DataBase | ndependent) module that provides acommon interface to different relational database systems; it makes
it possibleto write SQL that will run on many different relational database sysemswith little or no change.

Still, unless you are subject to a decree, the problem that the Perl bioinformatics programmer faces at the beginning
of aproject is, "Which relationd database system should | use?' It depends on the computer you're on and what
DBMSisadready in use, available, paid for, or known locdly. There are very expensive systems, and there are free
ones: well takeaquick look at some of the dternatives and use one of the most popular free onesfor the following
examples.

The beginning programmer should be aware that relationa databases are alarge field of endeavor. Stop at any local
bookstore with agood computer book section and you'll see an impressive number of books dedicated to relational
databases and SQL in generd, and especidly dedicated to working with specific relationa database management

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

6.2 Popular Relational Databases

Relational database management systems are big business. They account for a significant segment of the computer
business. Large companies often use them to manage their internd affairs and their sdles data. Universities manage
their internd affairs, and their research projects with them. Various governments use them extensively, from the
nationa to thelocd levels.

Theindustry leader a present for high-end systemsis Oracle. Along with other DBM S vendors such asIBM,
Microsoft, Sybase, Informix, and more, they provide large database systems that can handle large amounts of data,
and many queries againgt that data, very quickly. They aso provide design and management toolsfor the
programming and support staff alarge ingtitution needs to maintain a database system.

Unfortunately, these very nice software systems are dso very expensive. They have hefty price tags themselves, and
they require high-end computer systemsto run on.

From the top-of-the-line systems on down, there are many vendors and price ranges in the database marketplace.

The main contendersin the free DBM S marketplace are mSQL, MySQL, and PostgresSQL . These systems are dl
progressing steadily, even rapidly, in their abilities. | use MySQL in this book, but the reasons aren't terribly
important. The code | writein Perl and SQL runswith little need for change on any of these systems. If you'reinthe
position of actually having to decide on an DBMSto ingtal on your computer, you can find the information you need
on the home web pagesfor these systems.

MySQL ismy DBMS of choice becauseit'sfree; suitable for small- to medium-size database projects; and runson
most operating systems found in the lab, such as Mac, Windows, and Unix/Linux. It lacks some features mgjor
systemns have, but it has enough of them and isimplemented well enough that many businesses and many research
laboratories have found it quite suitable for their work. Approximately three million servershaveit ingtdled. On
balance, it has very good performance.[2]

[2] MySQL 's multithreading hel ps account for its good performance, but it lacks some of the more advanced features

of other DBMS available. Competition between these DBMS is keen, however, and there has been a certain amount
of jockeying for bragging rights as performance and feature sets are improved.

The detalls of MySQL are available, and you can get afree copy of it from http://mww.mysgl.org.

[TeamLiB]

http://www.mysql.org/default.htm
http://www.mysql.org

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

6.3 Relational Database Definitions

A relationd database is essentialy a set of tables (relations) that areinterrelated in certain ways. A tableisa
two-dimensiona matrix with aname. Each tableis composed of rows (tuples), and no two rows can have exactly
the same values. Each row is composed of named fields (attributes); each fild has a certain data type and aname,
and afield can only contain onevaue.[3]

[3] Asthename"rdation” suggests to the mathematicaly inclined, each table represents a subset of the Cartesian
product of the domains of the fields, in which each row is an element of the relation. However, the order of thefields
in atableisnot sSgnificant (because each field has a unique name), and that's an important departure from the
standard set-theoretic definition of arelation.

For instance, atable may be defined with the fields Name as a character string of at most 50 characters, an ID asan
integer, and a Date as a pecia date datatype. Each row then hasaName, 1D, and Date value. Table 6-1 and Table
6-2 show atable called genename with three fields and three rows, and one called organism with two fields and five
rows.

Table 6-1. genename

Name ID Date

agng 118 1984-07-13
wrinkle 9223 1987-08-15
hairy 273 1990-09-30

Table 6-2. organism

Organism Gene
humen 118

humen 9223
mouse 9223

mouse 273

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

6.4 Structured Query Language

The Structured Query Language (SQL., pronounced "sq |" or "see qud™) can be thought of as the working definition
of ardational database. It provides the bioinformatics programmer with the wherewithd to create, populate,
interrelate, query, and update arelational database on acomputer system. Y our DBMS comes with itsown
implementation of SQL, which will have dl the basic commands plus some, or maybe dl, the less-used commands
and features in the standard definition of the language, perhaps even some specia extensionsto the standard.

SQL dates back to the 1970s when it was developed at IBM. The most widely used versions of SQL are based on
the standard published in 1992 and commonly caled SQL2. A newer standard called SQL 3 isavailable and
supports emerging database functionality such as object-oriented and object-relational data models. MySQL is
based on a subset of the most commonly used parts of SQL 2, with the god of providing avery fast implementation
of the key components of SQL. Some features of SQL 3 are also being added.

QL isactudly afarly smplelanguageto learn. Most people find that getting an account established on thelr
compuiter, reading through aquick tutoria, and then having example code to copy and modify with the SQL
documentation close a hand, is enough to get started writing useful SQL code.

I'm not going to present an extensive SQL tutoria here, for three reasons. Firdt, such tutorids are easily and widdly
available. Second, each DBMS hasits own version of SQL, so the DBMS documentation (such as that which comes
with MySQL, for example) is necessary and available to you anyway. Third, SQL issuch abasicdly smplelanguage
that it's quite useful to learn the basics of it by Smply seeing afew examples. That's the gpproach I'll take.

If you are new to SQL, the best way to get familiar with it is by using the interactive command-line interface to try out
different commands. The following section demongtrates my Linux system running MySQL.

6.4.1 SQL Commands

Fird, | enter theinteractive mysgl program, providing my MySQL username (“tisdall™) and interactively entering my

MySQL account password:

[tisdall @oltrane tisdall]$ nmysqgl -u tisdall -p

Ent er password:

Wl cone to the MYSQL nonitor. Commands end with ; or \g.
Your MySQL connection id is 2 to server version: 3.23.41

Type '"help;' or "\h' for help. Type '\c' to clear the buffer.

Next, | ask for alist of al the databases that are defined in my MySQL DBMS:
nysql > show dat abases;

| Dat abase |

+
| caudyfly |
| dicty [
| gadfly [
| master [
| nysql I
| poetry [
| yeast [
[+
7 rows in set (0.15 sec)

N OB A A P

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

6.5 Administering Your Database

Database administration encompasses such tasks asingtalling and configuring the DBMS, backing up the data,
adding users and setting their various permissions, applying updates or new capabilitiesto the system, and smilar
tasks. If you just have yourself and afairly smdl lab to dedl with, it's not too bad. But organizations often hire one or
more database adminigtrators to do thiswork full time; even asmallish project, if it's critica and the budget exists,
can benefit from the attention of a professiond database adminigtrator.

If you are a beginning programmer and need to ingtall and maintain a database management system, you'll need to
read the manuas and learn the tools. Even if you have some computer administration experience, thereisabit of
learning involved. The best thing you can do isget help from an experienced database adminigtrator.

Failing such expert help, it's necessary to get good documentation and follow it. This depends on the system you're
using, of course. The following sections describe some of the basics.

6.5.1 Adding Users

One function a database administrator needs to know is how to add users and set their permissions, thet is, what
operationsthey're alowed to perform, and what resources they're allowed to view or change. In MySQL, for
example, each user needs an account name and a password for access (these aren't tied to the rest of the account
names and passwords on the computer system). Security can be important aswell. Y ou may use the database to
manage your new data and results, which you don't want to release to the public just yet; at the sametime, you may
be providing the public, through aweb site, access to your more established data and results. A system such as
MySQL provides several toolsto set up and manage accounts and security permissions.

6.5.2 Backup and Reloading

One essentid task for any computer system's effort, including working with databases, isto back up your work. All
computerswill break; every disk drive will crash and become inoperable. If you don't have timely backups of your
data, you will certainly loseit.

There are many waysto back up data; even MySQL has more than one method. However, even if you back up your
datafrom the database to abackup file, it's still necessary to make a copy of the backup file in another location that's
not on the same hard disk. For the smdl to medium project, it's possible to run a program that Smply makes a text
file containing MySQL commands that repopul ates your database. Thisis often aconvenient and workable method,
but check the MySQL documentation if you wish for dternatives.

Here, then, is how you can make abackup, or dump, of adatabase, in this case to the disk file homologs.dump:
[tisdall @ol trane devel opnent]$ nysqgl dunp honol ogs -u tisdall -p > honol ogs. dunp

Ent er password:

[tisdall @ol trane devel opnment] $

After that command, adump file called homologs.dump is crested. Heréswhat it looks like for my little two-table
database:

[tisdall @ol trane devel opnent]$ cat honol ogs. dunp

MySQL dunp 8.14
#
Host: | ocal host Dat abase: honol ogs

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

6.6 Relational Database Design

Database design isthe process of effectively organizing datainto tablesin ardationa database. When thinking about
how to organize a database you need to ask, "Wheat fields should | put together into tables, and how should |
interrdlate the tables?' In this section | will show you a short example that demonstrates some common and useful
techniquesfor doing just thet.

Relational database software projects are best broken down into separate stages. Thislist from Database Systems:. a
Practical Approach to Design Implementation, and Management (see Section 6.10), showsthetypica stages of
database design and construction:

Database planningSystem definitionReguirements collection and andysi sDatabase desgnDBM S sdectionA pplication
designPrototypingl mplementationData converson and |oadingTestingOperationa maintenance

For the small biology lab in which database programming may be a one-person project, some of these stages may be
brief and informal, but they still gpply.

How should the tables be defined for a new database? The answer depends on the problemsto be answered by the
data, but it'salso largely amatter of common sense and afed for the data. The database beginner typicaly looks at
the data, tries her hand at afew designs, and begins to get a sense of how tables can be used for a specific problem.
Let yoursdlf experiment and try afew dternatives, and you'll soon get the hang of it.

Tablesare commonly interrelated by indexing and by joining fields from different tables. The SQL language
implemented with your DBM S provides these abilities. Also, agroup of techniques caled normalization can help
you produce a good design and avoid some problems. Simply putting dataiinto tables doesn't guarantee a good
desgn.

A st of rules called norma forms helps you arrange the data into tablesin away that avoids certain problems. One
such problem is data redundancy, which is unnecessary duplication of datain different tables. A related problemis
update anomalies caused by having the same datain more than one location. When such data is updated, copies may
not be updated properly, and the database can become inaccurate.

Here are some smple rulesto follow when designing your database:

Each entry of each table hasasinglevaue. Thisisfirst norma form.
Each table hasaaunique identifier (called aprimary key) for each row. Thisis second normal form.
Names aren't used asidentifiers because they can lead to data redundancy.

Third and other normal forms aswell as other design considerations aren't covered in this book due to space
limitations. See Section 6.10 at the end of the book for more information about relationd database design. Consider
Table 6-3, which showsthis dternate, unnormaized version of my homologs database.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

6.7 Perl DBI and DBD Interface M odules

SQL isafarly smple and easy-to-learn language, considered by most to be well-tailored to itstask. However, there
arethings availablein most programming languages, such as control flow (while, for, foreach) and conditiond
branches (if-else) that aren't provided in most implementations of the language. The lack of these abilities severely
restricts the use of SQL as astandd one language.

Most applications that use arelational database are written in another language such as Perl. Perl providesalink
between the application, the programmer, the user, the files, the web server, and so on. Perl aso providesthe
program logic. The interaction between the application and the database istypically to execute some database
commands, such as fetching data from the database and processing it using Perl's capabilities. The logic of the
program may depend on the datafound in the database, but it is Perl, not SQL, that providesthislogic (for the most

part).

In Perl, aset of modules have been written that allow interaction with relational databases. The DataBase
Independent (DBI) module handles most of the interaction from the program code; the DataBase Dependent (or
DaaBase Driver) (DBD) modules, different for each particular DBMS, handle communicating with the DBMS.

6.7.1 Installing and Configuring Perl DBI and DBD Modules

To useaMySQL database from Perl, you need firg to have installed and properly configured MySQL. Thisisnot a
Perl job, but a database administration job; you have to get MySQL and ingtall it on your system and set up the
appropriate user accounts and permissions.

Y ou haveto then ingdl the Perl DBI module (http:/Amww.symbol stcone.org/technol ogy/perl/DBI) usng CPAN from
the command line:
perl -MCPAN -e shell;

Thentype:
install DBI

You can asoingal it by downloading the module from CPAN, for example, viaaweb browser and following the
QUICK START GUIDE ingructions shown here:
QUI CK START GUI DE:

The DBI requires one or nore '"driver' nodules to talk to databases.
Check that a DBD::* nodul e exists for the database you wi sh to use.

Read the DBl README then Build/test/install the DBl by doing
perl Makefile.PL
make
make test
make install
Then del ete the source directory tree since it's no | onger needed.

Use the '"perldoc DBI' conmand to read the DBl docunentation.

Fetch the DBD::* driver nodule you wi sh to use and unpack it.
http://search.cpan.org/ (or ww. activestate.comif on W ndows)
It is often inportant to read the driver READMVE file carefully.
Cenerally the build/test/install/delete sequence is the sane
as for the DBl nodul e.

http://www.symbolstone.org/technology/perl/DBI)
http://cpan.org/modules/by-module/DBD/default.htm
http://cpan.org/modules/by-module/DBD/DBD-mysql-2.1026.tar.gz
http://www.symbolstone.org/technology/perl/DBI)
http://search.cpan.org/
mailto:dbi-users-help@perl.org
http://www.tuxedo.org/~esr/faqs/smart-questions.html
http://dbi.perl.org/
http://search.cpan.org/
http://cpan.org/modules/by-module/DBD/
http://cpan.org/modules/by-module/DBD/DBD-mysql-2.1026.tar.gz

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

6.8 A Rebase Database | mplementation

In earlier chapters, | developed an object-oriented interface to Rebase that stores the datain asmple DBM hash
database, and in this chapter | showed how to interact with aMySQL relational database management system.

Now, let's put the two things together.

Inthis section, I'll take the Rebase.pm module that implements the Rebase class and modify it to use ardationa
database instead of Perl's smple hash-based DBM database. I'll call the resulting class RebaseDB.

For asmall problem like this, either approach works pretty well. In fact, on my computer, the DBM approach is
considerably faster than the MySQL version.

Thereationa database implementation has adower response due to the more complicated DBM S system involved
and increased overhead in programming because a greater number of programming statements must be written.
However, the reason for using it is probably clear: the relationa database provides alot more flexibility in making
queries, organizing the data, and, especialy, expanding the gpplication to handle agreater variety of data.

Thisflexibility isvery important. The Rebase database from http://mwww.neb.com/rebase includes severa more
datafiles, such aswhereto get the enzymes. It wouldn't be difficult to add atable or tablesto store that information in
the relational version of my Perl program; it would be amajor pain to keep adding new DBM hashesfor various
complex relationships. So, | want arelational database because it has good scaability as the database gpplication
grows.

6.8.1 RebaseDB Class: Accessing Restriction Enzyme Data

Following isthe code for anew class, RebaseDB, which amsto provide the same functiondity asthe previous class
Rebase, but with arelational database instead of a DBM hash data storage.

Intheinterest of gpace, the code for the following subroutinesisn't reproduced here; ook for them in Chapter 5:
revcomlUB, complementlUB, and IlUB_to_regexp. They are, of course, included in the RebaseDB.pm module
available for downloading from this book's web page.

package RebaseDB;

#

A sinple class to provide access to restriction enzyne data from Rebase
including regular expression translations of recognition sites

Data is stored in a MySQL dat abase

#

use strict;
use war ni ngs;
use DBI;

use Carp;

O ass data and net hods

{
A hash of all attributes with default val ues
ny %attributes = (

rohaco -~ J 1 H 1inticad i n thic i mml anant at i1 An

http://www.neb.com/rebase
http://www.neb.com/rebase

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

6.9 Additional Topics

In this short chapter, | have not mentioned severa topicsthat are of considerable importance in database work:

[TeamLiB]

SQL has only been demondrated, not fully laid out. It'safarly smple language; if you'll be doing much
database work, you should read the language manua that comes with your DBM S carefully, and ook at
severa examples. Tutoria books are aso available for most popular DBMS.

Transactions are loosdly defined as aset of database queries and modifications that belong together. For
example, you may enter anew geneinto your database by updating severd relevant tables. If your system
should experience afailurein the middle of such aset of updates, it can leave your database in an ill-defined
gate. By defining transactions, it's possible to avoid such undesirable states, and many DBM S now provide
support for thisview of database updates.

Entity-relationship modeing is atop-down design methodol ogy with afairly smple graphics representation
that Sgnifies relationships between the datain asystem.

Stored procedures are parts of a database application that are performed at the point of entry when auser is
filling out aform for instance. MySQL isjust now starting to support them; mgor DBMS such as Oracle
have had them for along time. They tend to improve performance of an application when used well; they dso
greatly increase the difficulty of migrating to adifferent DBMSif that becomes necessary in the future.

Object-oriented and object-relational databases are new datamodels that are finding some acceptance. Y ou
may come acrass them on the job, athough their use is much more limited than the stlandard relationa modd!.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

6.10 Resour ces

The literature on databasesis very large, and so the documentation for your particular RDMSis essentid. For this
book, | use MySQL, but many others are suitable.

Here are a handful of basic textbooks:

Database Systems. A Practical Approach to Design, Implementation, and Management, Thomas Connolly
and Carolyn Begg (Pearson Addison Wedey)

A Firgt Coursein Database Systems, Jeffrey Ullman (Prentice Hall)

An Introduction to Database Systems, C.J. Date (Pearson Addison Wedley)
MySQL, Paul DuBois (SAMYS)

The MySQL Cookbook, Paul DuBois (O'Reilly & Associates)

MySQL and Perl for the Web, Paul DuBois (SAMYS)

Programming the Perl DBI, Alligator Descartes and Tim Bunce (O'Rellly)

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

6.11 Exercises
Exercise 6.1

What's the difference between a database and a database management system? What's the difference between
MySQL and Oracle?
Exercise 6.2

What are the limitations of the smple built-in Perl hash database DBM compared to arelational database? Its
drengths?
Exercise 6.3

Is my homologs database, which was placed into second normal form, also in third normal form?
Exercise 6.4

Write aprogram that checksif areation isin second normal form.
Exercise 6.5

RebaseDB.pm iswritten to specify aMySQL database. Rewrite the module so it can specify another relational
database supported by DBI.
Exercise 6.6

The parse_rebase method of the RebaseDB.pm module uses severa database queries per input line as part of the
logic of avoiding duplicate entriesfor palindromes and reverse complements. Compare it with the parse_rebase
method in Rebase.pm. Make anew parse_rebase method that works for both DBM and DBI database storage and
will improvethe efficiency of the DBI method by minimizing database queries.

Exercise 6.7

RebaseDB.pmisaport of the earlier version Rebase.pm that used the DBM hash database. Make aversion of this
modul e that handles both DBM and MySQL databases depending on the arguments passed to the new method.
Exercise 6.8

Compare MySQL with some other reationa database management system; include such management issues as cost
of purchase, cost of maintenance, availability of skilled personnd, stability of vendor in the marketplace, and
customer support.

Exercise 6.9

Given the many possible dternate forms of asmall set of smplereations, would you say that the relationd modd is
not specific enough? What constraints might you add to improve the quaity and reduce the number of possible
relationa desgns?

Exercise 6.10

Name two bioinformatics problemsthat areill-served by the data structures of arelational database.
Exercise6.11

Implement arelational database that supports a project in your wet lab.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Chapter 7. Perl and the Web

One of the basic skills of aprogrammer is designing and putting up an interactive web Ste. Thisisastrue for
bioinformaticians asit isfor other programmers.

Not every bioinformatician will need to implement aweb ste. Y our work in bioinformatics may specidize early;
perhaps you work in analyzing agorithms for representing gene cascades, while web programming is someone else's

responsbility.

However, the Web has become the principal way to provide programsto users. Thisis certainly truein biology,
whereitistypica for laboratories to provide programs and access to data viathe Web. Collaborations can be
promoted between research groups, the need for publication of results can be addressed (witness the many
peer-reviewed journa articlesthat invite readersto visit web stesfor supporting information), and vauable research
tools can be widdly disseminated.

This chapter provides a quick introduction to the way web pages and the Internet work, followed by a closer look at
someimportant parts of web programming. Y ou'll see these techniques applied to creste an interactive web page that
accepts a sequence and enzyme names and returns a restriction map.

Along with the remarkable growth in use of the Web and the Internet have come an equd proliferation of languages,
systems, and tools for web programming. There are now avariety of choicesin how aprogrammer can create
interactive web pages.

Wewill use one such system that employs the Perl language. To make the web pages interactive—to enable usersto
typein queries and get responses—well use the popular CGI.pm Perl module that's shipped with al recent versions
of Perl. CGI stands for the Common Gateway Interface, aprotocol that provides dynamic web content—web pages
that change for various reasons (such as a user asking for a restriction map)—as opposed to static, unchanging web
pages. Perl and CGI were an early success story in programming the Web and remain widdly available as astandard
web programming technique. They congtitute abasic skill set in web programming, despite the many aternatives now
avalable

Because bioinformatics programmers need at least abasic working knowledge of web programming, I'll teach you
the skills necessary to put an interactive web page on the Web; the example is based on a continuation of the
restriction map example from previous chapters.

Tobegin, I'll give abrief run down of the chief components of web technology to give you the basic overview and
terminology you'll need to do web programming and to read further inthefield. If you're dready familiar with servers,
browsers, HTML, and the other components of web programming, fed freeto skip ahead.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

7.1 How theWeb Works

TheInternet is short for "interconnected networks.” It isa set of conventions—protocols—with which computers and
networks can intercommunicate. 1ts development from earlier work before 1980 alowed many different networksto
join and users on many computers to communicate. This communication was origindly donein severd ways, such as
by email, eectronic mail, and by FTP, file transfer protocol. These methods remain very popular and widdly used.

It wasn't until the early 1990s that the World Wide Web or Web was born as anew Internet service. The Web was
based on the new hypertext transport protocol or HTTP, and thefirst software to use it wasin the form of programs
called web browsers and web servers. Web browsers are programs that handle user requests and display resultsto
the user; the most widely known web browsersinclude Internet Explorer and Netscape. Web servers are programs
that accept requests from web browsers and send results back to them for display; Apache isthe most widely used
web server. With the development of web browsers and their ability to handle images aswell astext, these new
protocols sparked intense popular interest in computers. At the sametime, computer costs were faling steadily, and
their capabilities were growing, which made the new web protocol even more widespread.

The Web has become criticd to scientific programming; in fact, it started there. The Web and its associated
protocols such asHT TP were originaly developed at ahigh-energy physicslaboratory in Switzerland, CERN, and
they have been heavily used in the sciences ever since. In biology, as e sewhere, the Web has become one of the
principal means of communication.

7.1.1 URLs

The Web is essentialy atwo-part system of browsers and servers, in which browsers get results from servers and
display them for the user. Thistype of architectureis caled aclient-server design, in which the client (web browser)
requests service from the server (web server). Web browsers and servers are just programs that run on computers.
They may both be on the same compuiter, or, thanks to the Internet, they may be on opposite ends of the earth.

In order for this scheme to work, the web browser hasto be able to send its request to the web server. For instance,
say you want to seethe New Y ork Timesfrom your Internet Explorer web browser (or your Netscape, Mozilla, or
other web browser). Y ou have to know the location of the New Y ork Times on the Web and type it into the space
provided in your browser screen.

S0, you type http://www.nytimes.com, hit the Return or Enter key on your keyboard, and the next thing you know
you're reading the latest articles about human cloning and double-stranded RNA. How does thiswork, exactly?

The answer isredly very smple. The web browser sends your request to the Internet; the actua location of the
desired computer is determined, and your request is sent to the web server program on that computer. The web
server handles your request and sends back aweb page your browser then displays. Thisweb page may include
other URL s of specific articles. Y ou can click on one, and the whole process is repeated, but thistime your request is
for aspecific article, which isthen returned to your computer and displayed by your web browser.

Behind thissmple overall architecture are severa steps. A basic familiarity with some of these steps and the
associated terminology is needed in order to learn the fundamentals of web programming.

Thelocation you typed in, http: //maww.nytimes.com, is caled a Uniform Resource Locator or URL. The Internet (to

http://www.nytimes.com,
http://www.nytimes.com
http://www.nytimes.com/navigator.
http://www.nytimes.com/library/tech/reference/cynavi.html,
http://www.mycomputer.com/cgi/rebase.cgi?enzyme=EcoRI?enzyme=HinDIII.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

7.2 \Web Serversand Browsers

The whole architecture of the Web is based on the client-server, request-response protocol of HTTP. Thiscolors
everything that you do when you cregte interactive web pages.

Web browsers come in many flavors from many companies (or open source programming groups) and each hasits
own idiosyncrasies. Here, I'll stick to the basics, and the code should display okay on any standard web browser.

Asyou go forward, keep in mind the problem of incompatibility among web browsers and redize that at some point,
it may become necessary for you to dedl with the problem in the code you write for the Web.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

7.3 The Common Gateway | nterface

The preceding sections of this chapter have presented a brief overview of the design of the Web, the principa
components of the programming environment suchasHTTP, HTML, and URLS, and of the essentia
request-response nature of web interactions between web browsers and web servers. Now, it'stimeto look a CGlI
and a specific Perl module, CGI.pm, that iswidely used to create interactive web pages on servers.

CGl, the Common Gateway Interface, is an interface between aweb server and some other program that requests
such web content as HTML documents or images.

A web browser may request from the web server the output from a CGI program. In this case, the web server finds
the program or script, runs the program, and sends the output of the program back to the web browser. The output

of the program may be HTML, just asit may befound in agtaticfile, but it is crested by the CGI script dynamicaly,
S0 it may be different each time; for instance, it may include thetime of day initsdisplay.

In other words, a CGI script isjust a program that produces web content that can be displayed in aweb browser. It
also can read information passed to it by the web server, usudly parametersfilled out by the user in aform displayed
on aweb browser that asks for the specifics of aquery. For example, the parameters might be the name of a
sequence file and the name of aredtriction enzyme to map in the sequence. The CGI program takes the parameters,
runs, and outputs a dynamically created web page to be returned to the user's web browser.

A CGlI program can be written in just about any language, but the most common for CGI programs onthe Webis
Perl. Perl has avery nice module caled CGIl.pm that eases the task of writing CGI scripts; it'sapopular way to
cregte dynamic web steswith aminimum of bother.

7.3.1 Writing a CGI Program

S0, how do you write a CGI Perl program? Basicdly, you write a Perl program that includesthe line:
use Cd;

Y ou then use the CGI.pm methods so that your Perl program outputs the code for the web page you want to return.
After that, it's Ssmply amatter of placing your new CGI script in the proper place in the web server's directory
structure—namey, in adirectory that the web server knows is supposed to contain CGI scripts. Findly, you typein
the name of the CGlI script to aweb browser asa URL. The web browser sends the request to the web server,
which executesthe CGI script, collectsits output, and returnsit to your web browser to be displayed as aweb page
(or image, sound, or whatever).

Y ou can actually write a Perl program that just prints out HTML code (without ever using the CGl.pm module) and
ingtall that asa CGlI program. For instance, you can take the HTML page shown earlier and create a CGl Perl script
that dynamically outputsthat page. To proveit'sdynamic, I'll add alittle code that includes the time of day:

#!/ usr/bin/ perl

use strict;
use war ni ngs;

ny $time = localting;

print "Content-type: text/htm\n\n";

http://localhost/cgi-bin/cgiex1
http://ocalhost/cgi-bin/cgiex1.cgi

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

7.4 Rebase: Building Dynamic Web Pages

The smple examplesin the previous sections showed how to load and use the CGI.pm module to display avery
simple web page and how to examine the error logs of the web server to help debug a CGI program that doesn't

display properly.

Thered power of CGI comesfromits ability to provide dynamic content—web pages that may display different
information depending on such factors as when they're called, such asthe date and timein the previous example.
Dynamic content also handles the requests of usersthat are entered by typing in text fields, clicking on so-called
"radio” buttons, selecting from lists, or other ways of inputting.

In this section, I'll show you how to use some of the modules from previous chapters, combined with the use of the
CGl.pm module, to make an interactive, dynamic web page for displaying restriction maps. In thisweb page, the
user will select which restriction enzyme or enzymes to search for and specify the sequence to search either by
entering the sequence data into atext window or by browsing for thefile that contains the sequence.

Hereisthe short CGI program, webrebasel, that accomplishesthis. The main reason that it's short is because I've
aready developed modules for reading sequencefiles, for ng the Rebase database, for caculating restriction
maps, and for displaying the maps with smpletext graphics. | can just reuse those modules here to accomplish my
task:

#!/usr/bin/ perl

webrebasel - a web interface to the Rebase npdul es

To install in web, nmake a directory to hold your Perl nodules in web space
use lib "/var/www htm /re";

use Restrictionmap
use Rebase;

use SeqgFilel O

use CA@ qgw :standard/;

use strict;
use war ni ngs;

print header,
start_htm (' Restriction Maps on the Wb'),
h1(' Restriction Maps on the Wb"),
hr,
start_multipart_form
" '
h3("1) Restriction enzyne(s)? "),
textfield(' enzyne'), p,
h3("2) Sequence filename (fasta or raw format): "),
filefield(-name=>"fileseq
-defaul t=>"starting val ue'
- si ze=>50,
- max| engt h=>200,
), P,
strong(em("or")),
h3(" Type sequence: "),
t ext ar ea(
- hame=>'t ypedseq'
-rows=>10,
- col utms=>60,
- max| engt h=>1000,

http://www.perldoc.org/default.htm

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

7.5 Exercises
Exercise 7.1

Use your web browser to examine the actual HTML code for some of your favorite web pages. For example, on my
Netscape browser, once apageis displayed, | can select the menu options View and then Page Source to seethe
HTML code.

Exercise 7.2

Identify the web server that is running on your computer. What version of the softwareisingtaled? Find the
documentation for that web server. Are there good books available for that web server; free online tutorials,
newsgroups, or FAQs; or loca experts? Locate and examine the various logs for your web server. Where are the
configuration files? How do you stop the web server, change a configuration file, and start the web server again?Isit
agood ideato make acopy of aworking configuration file before you changeit?

Exercise 7.3

Isyour computer located behind afirewall or aproxy server?
Exercise 7.4

Get the URL ::URI module and read the documentation.
Exercise 7.5

Read the CGIl module documentation. If available, look at abook about Perl and CGl.
Exercise 7.6

The sequence file uploaded by the CGI Perl script webrebasel is assumed to bein FASTA format. Rewrite the
program so that it uses the SegFilel O.pm module and reports a problem back to the web page if that module can't
determine the sequencefile format.

Exercise 7.7

Write anew version of the CGI script webrebasel that uses the RestrictDB.pm module instead of the Restrict.pm
module; it will use arelationa database store of Rebase information instead of aDBM hash-based store. Note that
your DBMS will have to allow the web server to access its Rebase tables; this may occur as the user nobody or
some other. Getting the permissionsright is probably the hardest part of this exercise and is very much dependant on
your operating system and web-server software.

Exercise 7.8

Write aweb-based CGI Perl program that provides some information about your lab or an experiment that you've
conducted. Include ameans whereby users can send you email with questions.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Chapter 8. Perl and Graphics

Theimportance of an atractive and useful graphica display of information isfundamenta to scientific programming.
Just imagine the difference between seeing agraph of thisweek's stock market activity, and seeing alist of severd
pages of numbers describing the same activity. The former can be surveyed in aglance; the latter requires
considerable study. The same principle appliesto the display of resultsin bioinformatics. Of course, sometimes you
need the raw data; but very often what you need is the overview that agood graphic can provide.

Although there are many programming systems to produce graphics, the most popular are those that can be
displayed viaweb browsers. This chapter builds on what you learned in Chapter 7 by showing you how to add
graphicsto your display of scientific results on aweb page.

My vehicle of choicefor displaying scientific dataisthe GD.pm module, which alows you to produce imagesin the
standard graphics formats PNG (Portable Network Graphics) and JPEG (Joint Pictures Expert Group), among
others. I'll dso briefly mention the graphics packages ImageMagick and Gimp, two more full-featured graphics
creation and manipulation packages.

GD.pmisan interface to the gd graphicslibrary written in the C programming language by Thomas Boutell. Thegd
graphicslibrary isfarly basic; it'sfagt, it handlestext and various kinds of lines and spacefilling by means of its
variousfunctions, and it is easy to program eements such as graphs.

The main reason for its success, however, based on those important technical reasons, isthat it makesit possibleto
produce nice-looking graphics from your web site on-the-fly, in immediate response to arequest from a user
submitting aform.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

8.1 Computer Graphics

Computer graphics programming isa specialty within computer science, and it hasits own journals and conferences
and laboratories. It encompasses just about everything you can see on acomputer, from the fonts with which letters
are drawn (both on the screen, and when computer typeset and printed like this book), to elaborate images,
animation, and the specid effectsin movies.

Computer graphicsimages are represented as datain the computer; they're usualy organized in files, one per image,
athough they can aso be stored in acomputer program’'s memory, as| did when storing the graphicsfor the
Redtrictionmap.pm module in ascalar variable. Some kinds of animation store severa imagesin onefile, but | won't
cover those kinds of imagefiles here,

For the purposes of this chapter, we won't be digging into the details of how graphicsfiles are designed; that level of
detall isn't possiblein asngle chapter. Here, I'll just discuss the very basic information you need to get started
generating and displaying images for your web site. I'm going to show you some easy (and inexpensive) waysto
generate graphics, enough to set your feet on the right path. The modules | use have methods that handle the details
of reading and writing the different file formats, so you can smply use the methods and ignore the details of the
formats themsalves.

8.1.1 Basic Graphics Concepts

There are two things you need for computer graphics: aprogram to create a graphics file and the correct software
and hardware to display the image. These days, digita photography may be the source of digital images, or aprinted
image may be entered into digital format by a scanning device. As computer technology has devel oped, many
graphics display devices and file formats have seen some use and then virtualy disappeared asthey are supplanted
by other systems.[1] However, even though there are many file formats that are currently in use, afew standard
formats are widely known and can be displayed by most graphics display programs. The PNG and JPEG files| use
here are very commonly known.

[1] One of my first programming jobs was to write vector graphicsfor a Tektronix oscilloscope display. Vector
graphics are specified by endpoints of lines. Although such graphic programs are till in use, they are dmost dways
converted to raster graphicsfor display these days. The same year, | wrote alarge graphics program to write and
play computer music on a Blit terminal—araster graphics display that wasthefirst to have modern-style
smultaneoudy updated windows. Both systems have faded away, but the software they were written in was ported
to other display devices.

Although I won't go into any detail about graphicsfile formats, there are afew basic facts you need to understand
because you'll be asked to specify some of these parameters when you use agraphicslibrary (such as GD.pm). For
ingtance, in the Perl code that follows, you'll see a method colorAllocate that specifies and enters acolor into a color
table. Thefew short comments that follow in this section are meant to introduce these, and other common terms, and
to give brief definitions.

These days the standard graphics formats are mostly some variation of araster image, in which arectangular imageis
described by atwo-dimensiond matrix of pixel vaues. A pixd (short for "picture dement”) is one glowing dot on
your computer screen. These values can be represented in different ways, from asimple 1 or O representing black or
white (caled abitmap), to anumber representing various shades of grey, to various color image schemes. A
computer display may have different numbers of pixelsoveral; for instance, the one I'm working on now has 1024
horizontal and 768 vertical rows. Displays (or printers) are aso rated by how closely packed the pixelsare, usualy
by saying they have so many DPI or dots per inch.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

8.2GD

GD isan excdlent, relatively smple graphicstoolkit for creating or modifying graphic images. Y ou may create new
images or read in images from severa formatsto edit or merge. GD contains anumber of graphics primitives,
objects such aslines and rectangles, which can be added to an image. It aso includes support for TrueType fonts.

8.2.1 Installing GD
Toingal GD.pm on your compuiter, you should first test to seeif the module is dready there: try typing perldoc GD

to seeif the documentation that isingtalled with the module is running on your computer. If not, GD.pmisavailable
from CPAN, which isthe best way to get it (itsred homeisat http:/sein.cshl.org).

The GD documentation explains which supporting libraries are necessary. In particular, you need to have Thomas
Boutdl'sgd C library ingtdled, and in the proper version, to work with the verson of GD.pm you areingaling. To
work with different graphicsfile formats, the gd library isbest compiled in the presence of additiona libraries that
handle PNG, JPEG, zlib compression, and the FreeType version of TrueType fonts. How to obtain and ingtall these
additiond packagesisal explained in the GD documentation. Y ou may need extratimeto get these various pieces
into place before you can get GD to do everything it can do.

So, evenif you use CPAN to ingtal GD, the ingtallation requires some information about those additiona packages,
it'sagood ideato look at the documentation first, and to get those librariesin place, beforeingtaling GD. To ingall
onmy Linux system, | become root and issue the following commands:

perl -MCPAN -e shell;
cpan> install GD

8.2.2 Using GD

Thefollowing list isapartid overview of GD's cgpahilities

To create anew image, you cal the new congtructor with x and y values of the Sizein pixels of the desired
image. Y ou can aso choose between a paette or atruecolor image. And you can either create anew image
or open an existing image in afew common formats (such as PNG, JPEG, GD, and XPM).

Y ou can output images as PNG, JPEG, WBMP (abitmap image format), or its own GD format and the
compressed version GD2.

The color table can be manipulated in severa ways. A new color can be added or an old one deleted. The
closest match in the color table to specified red, green, and blue values can be returned, and the RGB vaues
of an exigting color table entry can be determined. One color can be designated as transparent so that
portions of an image drawn in that color areinvishble,

Lines can be drawn using defined "brushes,” or in certain defined styles (like dotted lines, for example).
Shapes may be filled with repested copies of another image, or "tiled.”

Vi ecan drans individiial nivade linee dadhed linee rectanalee nolyvianone and arce YV au i can fill reni one of the

http://stein.cshl.org/default.htm
http://stein.cshl.org

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

8.3 Adding GD Graphicsto Restrictionmap.pm

Now that you've seen an overview of the GD.pm Perl module, let's enhance the Restrictionmap.pm modul e that
you've seen previoudy in Chapter 5, Chapter 6, and Chapter 7 so it can output PNG graphicsfiles.

Reviewing how the Restrictionmap.pm module works, you can seethat its get_graphic method examinesthe
_graphictype attribute to determine what graphics drawing method to cdl. Following isthe get_graphic method again,
aong with the attributes the class defines. (Recall that this class inherits from the class Restriction.pm, so many things
are defined there):

O ass data and net hods

{

Alist of all attributes with default val ues.
ny %attributes = (

key = restriction enzyne namne

val ue = space-separated string of recognition sites => regul ar expressions
_rebase = { }, # A Rebase. pm obj ect

_sequence = "' # DNA sequence data in raw format (only bases)

_enzyme S # space separated string of one or nore enzyne nanes
_map = { }, # a hash: enzyme nanes => arrays of |ocations
_graphictype => "text', # one of 'text' or 'png' or sone other

_graphic = ' # a graphic display of the restriction map

)

Return a list of all attributes
sub _all _attributes {
keys % attri butes;

}

sub get_graphic {
ny($self) = @;

If the graphic is not stored, calculate and store it
unl ess($sel f->{_graphic}) {

unl ess($sel f->{_graphi ctype}) {
croak 'Attribute graphictype not set (default is "text")';
}

if graphictype is "xyz", nethod that makes the graphic is "_drawmap_xyz"
ny $drawnmapfuncti onname = " _drawrap_" . $sel f->{_graphictype};

Cal cul ate and store the graphic
$sel f->{ _graphic} = $sel f->%dr awmapf uncti onnane;

}

Return the stored graphic
return $sel f->{ graphic};

}

Asyou recdl, the get_graphic method requires that some graphic type be defined in the _graphictype attribute. It
then triesto call a method whose name incorporates the name of the graphic type; for ingtance, if the graphic typeis
"png", the get_graphic method triesto cal agraphic drawing method caled _drawvmap_png.

How might you design such aget_graphic method?

8.3.1 Designing Graphics

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

8.4 Making Graphs

Digplaying data graphically (graphs, bar graphs, pie charts, etc.) isthe most common god of image programming
Y ou'vejust seen how the GD Perl module helpsyou create graphics. It's great for quickly providing images from
CGI web programs.

GD::Graph, another Perl module that uses GD asits underlying mechanism, does an excellent job of rendering dl
sorts of graphs. Programming graphswith GD::Graph isreaively easy, especidly if you start with the example
programs and modify them for your own purposes. The moduleis object oriented, and it provides many optionsfor
displaying the various graphs. Plan to take some time exploring the documentation and trying different options asyou
begin programming with GD::Graph. Itsflexible yet relatively smple programming interface has madeit a popular and
powerful module. GD::Graph can be found on CPAN. It'ssmpleto ingall once you have GD itsdf installed.

For morein-depth information on graphics programming in Perl, see Perl Graphics Programming by Shawn Wallace
(O'Reilly). The book includes a chapter on GD::Graph that can serve as afinetutorial. The documentation for
GD::Graph (on CPAN, or type perldoc GD::Graph in atermina window) iswell-written and clearly organized. The
software comes with severd example programsthat will help get you Started.

The following short program, gd1.pl, uses GD::Graph to create asmple bar graph.
#!/ usr/ bin/ perl

#
gdl.pl -- create CGD: : Graph bar graph
#

use strict;

use war ni ngs;

use Carp;

use GD:: G aph:: bars;

nmy %lataset = (1 => 3,
2 => 17,

34,

23,

25,

20,

12,

= 3,

= 1

o nn
V V VYV

O©oo~NOOLh~W
1
\%

)

create new i nage
ny $graph = new GD:.: G aph:: bars(600, 300);

di scover maxi mum val ues of x and y for graph paraneters
ny($xmax) = sort {$b <=> $a} keys %dat aset;

ny($ymax) = sort {$b <=> $a} val ues %dat aset;

how many ticks to put on y axis

ny $yticks = int($ymax / 5) + 1;

define input arrays and enter 0 if undefined x val ue
ny(@sizes) = (0 .. $xmax);
ny(@counts) = ();
foreach ny $x (@xsizes) {
if (defined $dataset{$x}) {
push @counts, $dataset{$x};
}el sef

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

8.5 Resour ces

I recommend the book The Visua Display of Quantitative Information by Edward Tufte (Graphics Press).

Although I don't demondtrate their use in thisbook, | want to mention two more full-featured graphics software
packagesthat are free, and very useful if you'll be doing graphicsto any extent:

ImageMagick and its Perl interface module Image::Magick isavauable tool, especidly for creating images.
Over 60 different file formats are supported, compared to the much more limited number in GD. A wide
range of image-manipul ation techniques are supported, enabling you to create animation, thumbnails, and

apply many image processing functions, for example.

The Gimp (GNU Image Manipulation Program) is very much like the Photoshop program. It has an interface
to Perl scriptsthat is built-in, and there are several modules, arting with the Gimp.pm module, that provide
Perl programmerswith accesstoitsfunctiondlity.

Between GD, Gimp, and ImageMagick, the Perl programmer has ready accessto ahost of image creetion and
mani pul ation software, a no cost.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

8.6 Exercises
Exercise 8.1

Add an argument "lindlength=>50" to Restrictionmap to set the length of linesin the graphic output.
Exercise 8.2

Wheat happensif you request a graphic type for which no corresponding method has been defined? Would therebe a
better way to handle this situation than the current behavior of the module?
Exercise 8.3

If more than one enzyme is present, draw each enzymein adifferent color. Y ou'll have to solve the problem of how
to define the required number of colors and how to choose them so that they'll be easily distinguishable from each
other. You'l aso have to rework the annotation lines when more than one type of enzyme gppears on an annotation
line, drawing the different sectionsindividualy with different colors.

Exercise 8.4

Add header information such asfilename, count of restriction Sites for each enzyme, and date, to the text or PNG or
JPEG graphic generated by _drawmap_text or _drawmap_png or _drawmap_jpg.
Exercise 8.5

In_drawmap_text, add anumber at the beginning of each line of sequence giving the position of the first base on that
line. Firgt figure out the number of digits needed for the last line, so you can make the appropriate amount of space
before each line. Can you right-justify the numbersin the alotted space?

Exercise 8.6

In_drawmap_text, put a space between each group of 10 bases on alineto make it easier to find a particular base
postion.
Exercise 8.7

In_drawmap _pngor _drawmap_jpg, instead of putting the enzyme names in annotation lines above the sequence
lines, try smply printing the sequence lines, but highlight each restriction stewith color and enclosing it inabox. Try
giving each type of enzyme in the map a different color and type of box and add akey that showswhich enzyme
matches up with each color/box.

Thisworksfine with asingle enzyme. Does it work with two enzymes? With three or more? Do you need to change
the output of _drawmap_text to accomplish this?
Exercise 8.8

Rewrite the webrebasel CGI Perl script so that it istwo programs: one that displays the opening screen form, and
the other that calculatesthe PNG image. Say you cal theimage-generating CGI script rebase_png. Then usethe
CGl foranHTML tag such as:
print ing({ -src => "/cgi-bin/rebase_png?enzynme=EcoRl ; fil eseq=

sampl eecori . dna2" });

Inthisway, you can embed adynamicaly generated image into alarger HTML document; it's an dternative to the
method shown in the text in which theimage is shown by itsdlf in the web browser.
Exercise 8.9

The_drawmap_jpg and _drawmap_png methods are amost identical. Add athird method that does most of the
work of these methods, taking as an argument the file type desired for output. Then rewrite _drawmap _jpg and
_drawmap_png so that they're much shorter. Now add a_drawmap_wbmp method.

Exercise 8.10

The_drawmap_png method assumes that annotation lines contain spaces while sequence linesdo not. Thisiscalled

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] e
Chapter 9. Introduction to Bioper|

Bioperl isacollection of more than 500 Perl modulesfor bioinformatics that have been written and maintained by an
international group of volunteers. Bioperl isfree (under avery unregtrictive copyright), and itshomeis
http://bioperl.org.

One of the most difficult things about Bioperl is getting started using it. Thisis dueto a scarcity of good
documentation (which isbeing rectified) aswell asthe sheer sze of the Bioperl module library. This chapter will help
you get started using the Bioperl project software; it will guide you through the initial steps of getting the software,
ingaling it, and exploring the tutoria and example materid that it provides. After working through this chapter, youll
be well prepared to delve deeper into the riches of Bioperl, and, if you've aso worked through the object-oriented
chapters earlier in this book, you'll bein agood position to read the Bioperl code and contribute to the project
yoursdf.

The modulesin Bioperl are written in the object-oriented style. Perl programmerswho do not know object-oriented
programming can still use the Bioperl moduleswith just abit of extrainformation, as outlined in Chapter 3.

The Bioperl modules cover various areas of bioinformatics, including some you've seen previoudly in this book.
Although Bioperl includes some example programs, it is not meant to be a collection of complete user-ready
programs. Rather, it'simplemented as atoolkit you can dip into for help when writing your own programs. Itsgod is
to provide good working solutions to common bioinformatics tasks and to speed your program devel opment.

One of the best things about Bioperl isthat it's an open source project, meaning that interested devel opers are invited
to contribute by writing code or in other ways, and the code is available to anyone interested. If you've learned
enough about Perl for bioinformatics to have worked through a good portion of this book, you'l find plenty of
opportunity to get involved in Bioperl if you have thetime and inclination.

[TeamLiB]

http://bioperl.org/default.htm
http://bioperl.org

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
9.1 The Growth of Bioperl

The practice of fredly distributing Perl software for bioinformatics over the Internet began around 1992. Gradudlly,
Perl became more and more popular for biology applications.[1] The release of Perl Version 5 and its support for
object-oriented programming accelerated the devel opment of reusable modules for biology a many research centers
around the world. The large-scal e genome sequencing efforts, then underway, provided much of the impetus, aswell
asthetdent and funding, for these efforts. The Bioperl project, officialy organized in 1995, codesced around one of
these bioinformeatics research groups that was doing agood job of organizing the collective volunteer effort such
collaborative projects require. More information, including ashort history and list of contributors, can be found at the
Bioperl site http://bioperl.org. The Bioperl web siteisfrequently being updated and improved, and isthe primary
source of Bioperl code and documentation.

[1] See, for example, the article "How Perl Saved the Human Genome Project” by Lincoln Stein at
http://bioperl.org/GetStarted/tpj Is bio.html.

Today, the Bioperl project has grown to a point where it is both useful enough, and well enough documented, thet it
isamugt for Perl programming in bioinformatics. The documentation includes a program bptutorid.pl that comeswith
Bioperl, which explains and demonstrates several areas of the project (more on that later in this chapter).

[TeamLiB]

http://bioperl.org/default.htm
http://bioperl.org/GetStarted/tpj_ls_bio.html
http://bioperl.org
http://bioperl.org/GetStarted/tpj_ls_bio.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

9.2 Installing Bioperl|

Ingtdling Bioperl'slarge collection of modulesian't too difficult. It usudly goesfairly painlesdy, even though there are
afew extraingd|lation steps due to the additional outside programs and Perl modules on which Bioperl depends.
Y ou will probably want to use Perl's CPAN to fetch and ingtal Bioperl.

INSTALL isagood document that covers Bioperl ingtalation on Unix/Linux, Windows, and Mac operating systems.
It's part of the Bioperl distribution and islocated at http://bioperl.org/Core/Latest/INSTALL . Thislocation may
change, but it's easy to find from the Download link on the main Bioperl web page. If you're going to install Bioperl, |
recommend you read this document first; here, I'll give an overview of what's available and add afew additiona
commentsthat may help with ingalation.

Hereéshow to get Bioperl on different platforms:

On Unix/Linux, if you download the tar file from the web site, you merely need to untar it and go through the
configure and make process by hand, as described inthe INSTALL file that comes with the distribution.

If you have a Microsoft Windows machine with ActiveState's Perl (http://Aww.activestate.com), theré'sa
PPM file avallablefor Bioperl; at thetime of thiswriting, it'sat http://bioperl.org/ftp/DIST/Bioperl-1.2.1.ppd.

Thereisdso aCV Srepostory for Bioperl from which you can fetch the most current versions of the
modules. But be careful: some newer versions of the modules are implementing new features and have more
bugs than are found in some of the older, more stable releases. The details of how to ingtdl from CVSare
aso available at the Bioperl web page.

All these methods for ingtalling Bioperl arefine, but probably the most common way for Perl programmersto ingtall
sets of modulesis by way of CPAN. | discussed CPAN in Chapter 1, but it'sworth discussing again asit relatesto
Bioperl.

Toingal Bioperl, you sart by typing thefollowing a the command line:
perl -MCPAN -e shell;

Thisgivesthe CPAN shell prompt:
cpan>

It's often the case that amodule you want to install may require other modulesfor its proper operation, and perhaps
one or more of these additional modules have not yet been ingtaled. The CPAN system includes away to check to
see what other modules are required, and you can configure it to automatically follow and install missing prerequisites.

Especidly with alarge collection of moduleslike Bioperl, you may expect to see such prerequisites crop up. When |
asked my CPAN session how it was configured:

cpan> o conf

one of the lines of output from that query was:
prerequisites_policy ask

http://bioperl.org/Core/Latest/INSTALL
http://www.activestate.com/default.htm
http://bioperl.org/ftp/DIST/Bioperl-1.2.1.ppd
http://bioperl.org/Core/Latest/INSTALL
http://www.activestate.com
http://bioperl.org/ftp/DIST/Bioperl-1.2.1.ppd

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot
9.3 Testing Bioper|

To check that things were working okay with my new Bioperl ingtdlation, | first wrote alittle test to seeif aPerl
program could find the Bio::Perl module:
use Bio::Perl;

I ranit by putting it in afile bp0.pl and giving it to the Perl interpreter:
[tisdall]# perl bpO. pl
[tisdall]#

Asyou seg, it didn't complain, which means Perl found the Bio::Perl module. If it can't find it, it will complain. When |
copied the bpO.pl program to afile caled bpO.pl.broken and changed the module call of Bio::Perl to acal for the
nonexistent module Bio::Perrl, | got the following (dightly truncated) error outpt:

[tisdall @ol trane devel opment]$ perl bpO. pl. broken
Can't locate Bio/Perrl.pmin @NC

BEA N fail ed--conpilation aborted at bpO. pl.broken line 1.
9.3.1 Second Test

Now | knew that Bio::Perl could be found and loaded. | next tried a couple of test programsthat are given in the
bptutoria.pl document. | found alink to that tutorial document on the Web from the http://bioperl.org page.
Alternately, | could have opened awindow and typed at the command prompt:

perl doc bptutorial. pl

| went to the section near the beginning of the document called 1.2 Quick getting started scripts’ and created afile
tut1.pl on my computer by pasting in the text of thefirgt tutorial script:
use Bio:: Perl;

this script will only work with an internet connection
on the conputer it is run on
$seq_obj ect = get _sequence(' swi ssprot',"ROAL HUVAN') ;

write_sequence(">roal.fasta",' fasta', $seq_object);

| then ran the program and looked at the outpuit file:

[tisdall]$ perl tutl. pl

[tisdall]$ cat roal.fasta

>ROA1_HUMAN Het er ogeneous nucl ear ribonucl eoprotein Al (Helix-destabilizing protein)
(Single-strand binding protein) (hnRNP core protein Al).
SKSESPKEPEQLRKLFI GGLSFETTDESL RSHFEQAGTL TDCVVVRDPNTKRSRGFGFVT
YATVEEVDAAMNARPHKVDGRVVEPKRAVSREDSQRPGAHL TVKKI FVGE KEDTEEHHL
RDYFEQYCGKI EVI EI M DRGSGKKRGFAFVTFDDHDSVDKI VI QKYHTVNGHNCEVRKAL
SKQEMASASSSQRCRSGSGNFCCERGEGE-GENDNFGRGGNF SGRGG-GGSRGEEGYGGESG
DGYNG-GNDGGYGGEGEGEPGY SGGSRGY GSCEGY GNQGSGYGGSGSYDSYNNGGEGRGFGGEG
SGSNFGGGGES YNDFGNYNNQSSNFGPMKGGENFGGRSSGPY GEEERYFAKPRNQGGYGGSS
SSSSYGSGRRF

[tisdall]$

That seemed to work perfectly.

9.3.2Third Test

| tried the next short script from the same section of the tutorid, pasting it into afile called tut2.pl:

[tisdall]$ cat tut2.pl
use Bio::Perl;

http://bioperl.org/default.htm
http://bioperl.org
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
http://bugzilla.bioperl.org/

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

9.4 Bioper| Problems

Bioperl is4till awork in progress, and it has some problems. 1'd like to mention the two main problems now.

Firg, the Bioperl documentation isincomplete. In fact, until fairly recently, there was no document that provided a
tutoria introduction to the project. This has changed; the bptutoria .pl document, which you've aready seen and will
see more of, isan excellent beginning, despite its occasiona errors. This document cleverly combines atutoria with
quite afew example programsthat you can run, as you'll soon see.

Other documentation for Bioperl isaso available, including Internet-based tutorids, forthcoming books, example
programs, and journa articles. So, the Stuation has recently improved.

Second, Bioperl isbig (over 500 modules), written by volunteers, and gradually evolving. The size of the project isa
sgn that Bioperl addresses many interesting and useful problems, but it also meansthat, for the new user of Bioperl,
an overview of the available resourcesisatask in itsdlf.

The mgority of the Bioperl codeis quite good, especidly the most-used parts of it. However, the volunteer and
evolving nature of Bioperl development means that some of the code is unfinished and not aswell integrated with
other parts of the project as one would like. Newer or less used modules may till need some shaking out by usersin
redl-world Stuations. Thisiswhere you can make an initia contribution to the project: asyou find problems, report
them (more on thet later).

Many of the computing world's most successful programs are the result of the same kind of volunteer development as
Bioperl (the Perl language itsalf and the Apache web server are two examples). Bioperl iswell positioned to achieve
asmilarly centrd postion inthefield of bioinformatics.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

9.5 Overview of Objects

Bioperl isabig project and afairly large collection of modules. Some of these modules are stlandalone; othersinteract
with each other in various ways.

Y our first task in learning about Bioperl isto get an idea of the main subject areas the modules are designed to
address. So to begin with, hereisabrief overview of the main types of objectsin Bioperl, collected in afew broadly
defined groups.

Sequences Bio::Seg isthe main sequence object in Bioperl.Bio::PrimarySeq is a sequence object without
features.Bio::Segl O provides sequencefileinput and output.Bio:: Tools::SeqStats provides statisticson a
sequence.Bio::LiveSeq::* handles changing sequences.Bio:: Seq::LargeSeq provides support for very large sequences.
Databases Bio::DB::GenBank provides GenBank access. Smilar modules are available for severd biological
databasesBio::Index::* indexing and accessing locd databases.Bio:: Tools::Run::StandAloneBlast runsBLAST on
your local computer.Bio:: Tools::Run::RemoteBlast runs BLAST remotely.Bio::Tools::BFlite parsesBLAST
reports.Bio::Tools::BPpslite parses psiblast reports.Bio:: Tools:HMMER::Results parsessHMMER hidden Markov
model results. Alignments Bio::SimpleAlign manipulates and displays smple multiple sequence
dignments.Bio::UnivAIn manipulates and displays multiple sequence dignments.Bio:: L ocatableSeq are sequence
objectswith start and end pointsfor locating relative to other sequences or alignments.Bio:: Tools:pSW dignstwo
sequences with the Smith-Waterman agorithm.Bio:: Tools::BPbl2seq isalightweight BLAST parser for pairwise
sequence dignment using the BLAST dgorithm.Bio::Alignl O dso dignstwo sequenceswith BLAST .Bio::Clugdw is
an interface to the Clustalw multiple sequence dignment package.Bio:: TCoffeeis an interface to the TCoffee multiple
sequence dignment package.Bio::Variaion::Allde handles sets of dldesBio::Variation::SeqDiff handles sets of
mutations and variants. Features and genes on sequences Bio::SegFeature is the sequence feature object in
Bioperl.Bio::Tools::RestrictionEnzyme | ocates redtriction Stesin sequence.Bio:: Tools::Sigcleave finds amino acid
cleavage sites.Bio:: Tools::OddCodes rewrites amino acid sequencesin abbreviated codes for specific Satistica
anadysis (e.g., ahydrophobic/hydrophilic two-letter aphabet).Bio:: Tools:: SegPattern provides support for regular
expression descriptions of sequence patterns.Bio::Locationl provides an interface to location information for a
sequence.Bio::L ocation::Simple handles smple location information for asequence, both asasinglelocation and asa
range.Bio::Location::Split provides location information where the location may encompass multiple ranges, and even
multiple sequences.Bio::L ocation::Fuzzy provideslocation information that may beinexact.Bio:: Tools::Genscanisan
interface to the gene finding program.Bio:: Tools::Sim4::Results (and Exon) is an interface to the gene exon finding
program.Bio:: Tools::ESTScan is an interface to the gene finding program.Bio:: Tools::MZEF isan interface to the gene
finding program.Bio:: Tools::Grall isan interface to the gene finding program.Bio:: Tools::Genemark isan interface to
the gene finding program.Bio:: Tools::EPCR parses the output of ePCR program.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

9.6 bptutorial.pl

I've dready shown you alittle of the bptutoria.pl document. | ran and discussed afew of the short example programs
in the preceding sections.

Asyou know, one of the easiest waysto get started with aprogramming system isto find some working and fairly
generic programsin that system. Y ou can read and run the programs, and then proceed to ater them using them as
templates for your own programming devel opment.

Bioperl comeswith adirectory of example programs, but the best place to begin looking for Starting-off program
codeisright in the bptutoria.pl document itsdlf. That .pl suffix on the name isthe giveaway; the document is actudly
itself aprogram, cleverly designed so that you can read, and run, example programs that exercise the core parts of
the Bioperl project.

The following explanation of the runnable programs that are part of bptutorid.pl appears a the end of the document
(when you view it on the Web or asthe output of perldoc bptutorid.pl).
V.2 Appendi x: Tutorial deno scripts

The following scripts denmonstrate many of the features of
bi operl. To run all the core denps, run

> perl -w bptutorial.pl O

To run a subset of the scripts do
> perl -w bptutorial.npl

and use the displayed hel p screen.

It may be best to start by just running one or two denos
at atine. For exanple, to run the basic sequence nani pu-
| ati on deno, do:

> perl -w bptutorial.pl 1

Sone of the later denps require that you have an internet
connection and/or that you have an auxilliary bioperl
library and/or external cpan nodul e and/ or external pro-
graminstalled. They may also fail if you are not running
under Linux or Unix. 1In all of these cases, the script
shoul d fail "gracefully" sinply saying the dempb is being
ski pped. However if the script "crashes", sinply run the
ot her denps individually (and perhaps send an email to

bi oper!| -1 @i operl.org detailing the problem:-).

(Recall that the -w flag to Perl turns on warningsin amost the same manner as ause warnings, directive.)
Totest my Bioperl ingdlation, | started by running the basic sequence mani pul ation demo as suggested.

Fird, | thought I might copy the bptutorid.pl program file into my own working directory from the Bioperl distribution
directory where I'd unpacked the source code. | wanted to put it in my own directory so as not to muddy up the
Bioperl digtribution directory with my own extraneousfiles. However, | discovered that the tutoriad demo programs
rely on anumber of datefilesthat are found in the t/data/ subdirectory of the Bioperl distribution. Running the

. P T P | P L R T L ol U e = . T A ¥ I B o

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

9.7 bptutorial.pl: sequence_manipulation Demo

Inthissection, I'll go through the code for the demo subroutine sequence_manipulation that was shown in the last
section.

The subroutineis actually an anonymous subroutine; areference to the subroutine is saved in the scalar reference
variable $sequence_manipulation:
$sequence_mani pul ati ons = sub {

}

Thefirst few lines of code declare some variables with my. Notice that these are not being passed in as arguments;
this method uses no arguments but does occasionally use globa variables such as $dna seq file, which, asyou've
just seen, contain the pathname of the input sequence file the demo will use:

ny ($infile, $in, $out, $seqobj);
$infile = $dna_seq_file;

print "\ nBegi nni ng sequence_mani pul ati ons and Seql O exanple... \n";

The codeis cross-referenced to the tutorial sections of the file. The next comment line refersto the part of the

document:
111.3.1 Transforni ng sequence files (Seql O

which can be looked up in the table of contents to the document for further reading:
I11.3 Manipul ati ng sequences
I11.3.1 Manipul ati ng sequence data with Seq nethods (Seq)

Now, I'll take alook at thefirst section of example code in the sequence_manipul ations method:
111.3.1 Transformnmi ng sequence files (Seql O

$in = Bio::SeqlO>new'-file => S$infile ,'-format' => 'Fasta');
$seqobj = $i n->next_seq();

perl "tied filehandl e" syntax is available to Seql Q

allowing you to use the standard <> and print operations
to read and wite sequence objects, eg:

#$out = Bio:: Seql O >newFh('-format' => 'EMBL');

$out = Bio::Seql O>newFh('-format' => 'fasta');

print "First sequence in fasta format... \n";
print $out $seqobj;

The code starts with acall to the new object constructor of the Bio::Segl O class. The new method is being passed
the pathnameto aFASTA filein $infile, and told that the format is FASTA.

A quick look at the Bio::Segl O documentation explains that the call to Bio::Seql O->new returns a stream object for
the specified format. So, $out is a stream object (astream isinput or output of data) for FASTA-formatted data, and
$inisastream object for FASTA-formatted input from the file named in the $infile variable. These $in and $out
objectsare also filehandles.

After the $in object isinitidized on the FASTA file named in $infile, it calsthe next_seq method, which getsthe next

(inthis case, thefirgt and perhaps only) FASTA record from thefile, and it creates a sequence object $seqobyj. The
it ®*ou it ohiert ie created The Parl nrint datament icthen called 11 nn €ou ik ac afilahandle and nrintina Leeninhi

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
9.8 Using Bioperl Modules

I've reached my stated god: to get you started using Bioperl. Needlessto say, thereisagreat deal moreto explore
than will fit into the confines of this chapter.

For those who wish to continue, hereisashort list of some of the interesting and useful parts of Bioperl that will
repay your effortsto learn them with considerably increased programming power:

Overview of Bioperl objects
Seq objects

Gbrowse and dff files
BLAST parsng

Automated database searching

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

Part I11: Appendixes

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Appendix A. Perl Summary

This appendix summarizes those parts of the Perl programming language that will be most useful to you asyou read
thisbook. It is not a comprehensive summary of the Perl language. Remember that Perl is designed so that you don't
need to know everything in order to useit. Source materia for this gppendix came from Programming Perl (O'Rellly).

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
A.1 Command Interpretation

The Perl programsin thisbook start with aline something like:
#!/usr/ bin/ perl

On Unix (or Linux) systems, thefirgt line of afile can include the name of a program and some flags, which are
optional. Theline must start with #, followed by the full pathname of the program (in this case, the Perl interpreter),
followed optiondly by asingle group of one or more flags. It's common in Perl programsto seethe -w flag on this
first command interpreter line, like so:

#!/usr/bin/perl -w

The-w flag turns on extrawarnings. | prefer to do that with theline:
use war ni ngs;

because it's more portable to different operating systems.

If the Perl program fileis caled myprogram and has executable permissions, you can type myprogram (or possibly
Jmyprogram or thefull or relative pathname for the program) to start the program running.

The Unix operating system starts the program specified in the command interpretation line and givesit asinput the
rest of thefile after thefirgt line. So, inthis case, it sartsthe Perl interpreter and givesit the program in thefileto run.

Thisisjust ashortcut for typing the following a the command line:
[usr/bin/perl myprogram

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

A.2 Comments

A comment beginswith a# sgn and continues from thereto the end of the sameline. It isignored by the Perl
interpreter and is only therefor programmersto read. A comment can include any text.

[TeamLiB] [«erevious]ne

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A .3 Scalar Values and Scalar Variables

A scdar vdueisasingleitem of data, such asastring, anumber, or areference.

A.3.1 Strings

Strings are scalar values and are written as text enclosed within single quotes, like so:
"This is a string in single quotes.'

or double quotes, such as.
"This is a string in double quotes."

A single-quoted string prints out exactly aswritten. With double quotes, you can include avariable in the string, and
itsvauewill beinserted or "interpolated.” Y ou can aso include commands such as\n to represent anewline (see

Table A-3):
$aside = '(or so they say)';
$decl aration = "M sery\n $asi de \nl oves conpany."

print $declaration;

This snippet prints out:

M sery
(or so they say)

| oves conpany.

A.3.2 Numbers

Numbers are scalar values that can be:

Integers
3
-4
0
Hoating-point (decimd):
4.5326

Scientific (exponentia) notation (3.13 x 1023 or 313000000000000000000000):
3. 13E23

Hexadecimd (base 16):
Ox12bc3

Octdl (base 8);
777

Binary (base 2):
0010101011

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A.4 Assignment

Scalar variables are assigned scalar values with an assgnment operator (the equals Sign) in an assgnment statement:
$t housand = 1000;

assignstheinteger 1000, ascaar vaue, to the scdar variable $thousand.

The assgnment statement looks like an equa sign from dementary mathematics, but its meaning isdifferent. The
assgnment statement is an ingtruction, not an assertion. 1t doesn't mean "$thousand equals 1000." 1t means "store the
scalar value 1000 into the scalar variable $thousand”. However, fter the statement, the value of the scalar variable
$thousand is, indeed, equa to 1000.

References are usudly saved in scalar variables. For example:
$pi = \3.14159265;

If you try to print $pi after this assgnment, you get an indication that it's areference to ascdar vaue a amemory
location represented in hexadecimal digits. To print the value of avariablethat's areference to ascaar, precedeits
name with an additiona dollar sgn:

print $pi,"\n";

print $$pi, "\n";

Thisgivesthe output:
SCALAR(0x811d1bc)
3. 14159265

Y ou can assign vauesto severd scaar variables by surrounding variables and vauesin parentheses and separating
them by commas, thusmaking ligs

($one, $two, $three) = (1, 2, 3);
There are several assignment operators besides = that are shorthand for longer expressions. For instance, $a+= $b
isequivalent to $a=$a+ $b. Table A-1 isacompletelist.

Table A-1. Assgnment operator shorthands

Example of operator Equivalent

$a+=$b $a=%a+ $b (addition)
$a-=$b $a=%a- $b (subtraction)
$a*=$b $a=$a* $b (multiplication)

$a/=$b $a=%a/$b (division)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

A5 Statements and Blocks

Programs are composed of statements often grouped together into blocks.
A statement ends with asemicolon (;), which isoptiond for the last statement in ablock.

A block is one or more stlatements usudly surrounded by curly braces:

{
$t housand = 1000;

print $thousand;
}

Blocks may stand by themselves but are often associated with such constructs asloops or if statements.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A.6 Arrays

Arraysare ordered collections of zero or more scalar values, indexed by pogition. An array variable beginswith the
@ signfollowed by alegal variable name. For instance, here are two possible array variable names.

@rrayl

@na_fragnents

Y ou can assign scalar vauesto an array by placing the scalar valuesin alist separated by commas and surrounded
by apair of parentheses. For instance, you can assign an array the empty list:
@rray = ();

or one or more scalar values:
@na_fragnents = (' ACGI', $fragnment2, 'GGCGCAA');

Noticethat it's okay to specify ascaar variable such as $fragment2 in aligt. Its current value, not the variable name,
isplaced into the array.

Theindividud scdar values of an array (the elements) areindexed by their position in the array. The index numbers
begin at 0. Y ou can specify theindividua elements of an array by preceding the array name by a$ and following it
with theindex number of the dement within square brackets, like so:

$dna_fragnment s[2]

Thisequasthevaue of 'GGCGGA', given the values previoudy set for thisarray. Notice that the array hasthree
scalar valuesindexed by numbers0, 1, and 2. Thethird and last eement isindexed 2, oneless than the total number
of eements 3, because thefirst eement isindexed number O.

Y ou can make a copy of an array using an assignment operator =, asin this example that makes a copy @output of
an exiging array @input:
@ut put = @nput;

If you evaluate an array in scdar context, the value isthe number of dementsinthe array. Soif array @input hasfive
elements, thefollowing example assgnsthe value 5 to $count:
$count = @nput;

Figure A-1 shows an array @myarray with three e ements, which demonstrates the ordered nature of an array by
which each eement appears and can be found by its positionin the array.

Figure A-1. Schematic of an array

Arrays:

Emyarray= [THA RN, Protein’);

Fositions 1 1 :
Scalar values I OMA I RNA I Protein I

Y ou can make areference to an array by preceding it with abackdash; you dereference it by preceding the
reference with an a sign @ for the entire array or with an extradollar sign $for anindividua element of the array:
@ = ('one', '"two', 'three');

$aref = ~ a;

print $aref, "\n";

print $$aref[0], "\n";

pl’l nt " @ar ef II, ||\ nn;

~ 7o~ Hha A i

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A.7 Hashes

A hash (also called an associative array) isacollection of zero or more pairs of scalar values, caled keys and vaues.
The vaues are indexed by the keys. An array variable begins with the % sign followed by alegd variable name. For
ingtance, possible hash variable names are:

%hashl

%genes_by nane

Y ou can assign avaue to akey with asmple assgnment statement. For example, say you have ahash called
Y%baseball_stadiums and akey Philliesto which you want to assign the value Citizens Bank Park. This statement
accomplishesthe assgnment:

$basebal | _stadiuns{' Phillies'} = 'Citizens State Bank';

Note that asingle hash vaueisreferenced by a$ instead of a % at the beginning of the hash name; thisissmilar to
the way you referenceindividua array vauesusing a$ instead of a @.

Y ou can assign severd keys and valuesto ahash by placing their scalar valuesin alist separated by commas and
surrounded by apair of parentheses. Each successive pair of scaars becomes akey and avauein the hash. For
ingdtance, you can assign a hash the empty list:

%hash = ();

Y ou can aso assign one or more scalar key/vaue pairs.
%genes_by_name = ('genel', ' AACCCGGITGGIT', 'gene2', 'CCTTTCGGAAGGIC);

Thereisan another way to do the same thing, which makes the key/value pairs more readily apparent. This
accomplishes the same thing as the preceding example:
%genes_by nane = (

'genel' => ' AACCCGGITGGIT ,

'gene2' => ' CCTTTCGCGAAGGTC

)

To get the value associated with a particular key, precede the hash name with a$ and follow it with apair of curly
braces containing the scalar vaue of the key:
$genes_by nane{' genel'}

Thisreturnsthevadue'AACCCGGTTGGTT, given the vaue previoudy assigned to the key 'genel’ in the hash
%genes by name. Figure A-2 shows a hash with three keys.

Figure A-2. Schematic of a hash

Hashes
Hame hssigmment List of key/value pairs
Gmyhsh = ["Framel’ == AleTALGT,

Tramed’ == "CaTACGT;
framed’== “GTACGT";

Values (unorderad)

(GTACGT

framel

i

framed ACGTACGT

i

frame3 GTACET

Y ou can get an array of dl the keysin ahash with the operator "keys', and you can get an array of dl thevauesina
hash with the operator "vaues'.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] e

A.8 Complex Data Structures

The standard Perl datatypes, scaar, array, and hash, can be combined into more complex data structures using
references. The construction of complex data structuresis summarized in Chapter 2.

Asan example, you can define atwo-dimensiona matrix as an array of anonymous arrays (recadl that an anonymous
array isareferenceto array data):
@i croarray = (

[10, 2, 14],

[15, 4, 54],

[51, 0, 99]
)
[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

A.9 Operators

Operators are functions that represent basic operations on values: addition, subtraction, etc. They are frequently used
and are core parts of the Perl programming language. They are redly just functions that take arguments. For instance,
+ isthe operator that adds two numbers, like so:

3 + 4

Operatorstypically have one, two, or three operands; in the example just given, there are two operands 3 and 4.

Operators can appear before, between, or after their operands. For example, the plus operator + appears between
its operands.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

A.10 Operator Precedence

Operator precedence determines the order in which the operations are applied. For instance, in Perl, the expression:
3+3*4

isn't evaluated left to right, which calculates 3 + 3 equas 6, and 6 times 4 resultsin avalue of 24; the precedence
rules cause the multiplication to be applied firgt, for afind result of 15. The precedencerulesare availablein the
perlop manpage and in most Perl books. However, | recommend you use parentheses to make your code more
readable and to avoid bugs. They make the following expressions unambiguous; thefird:

(3+3) * 4

evauates to 24, and the second:
3+ (3 * 4)

evaluatesto 15.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A.11 Basic Operators

For more information on how operators work, consult the perlop documentation bundled with Perl.

A.11.1 Arithmetic Operators

Perl hasthe basic five arithmetic operators:
+

Addition

Subtraction

*

Multiplication
/

Divison

**

Exponentiation
These operators work on both integers and floating-point values (and if you're not careful, strings aswell).
Perl aso has amodulus operator, which computes the remainder of two integers:

% nodul us

For example, 17 % 3is 2, because 2 isleft over when you divide 3into 17.

Perl dso has autoincrement and autodecrement operators:.

++ add one

- subtract one

Unlike the previous six operators, these change avariable's vaue. $x++ adds one to $x, changing 4 to 5 (or ato b).

A.11.2 Bitwise Operators

All scaars, whether numbers or strings, are represented as sequences of individua bits "under the hood." Every once
in awhile, you need to manipulate those bits, and Perl providesfive operatorsto help:

&

Bitwiseand

|

Bitwiseor

AN

Rif\wwica vor

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A.12 Conditionals and L ogical Operators

This section covers conditiona statements and logical operators.

A.12.1 true and false

In aconditiona test, an expression evaluates to true or false, and based on the result, a statement or block may or
may not be executed.

A scdlar vaue can betrue or falsein aconditiond. A siring isfaseif it'sthe empty string (represented as™ or). A
gringistrueif it'snot the empty string.

Smilarly, an array or ahash isfdseif empty and true if nonempty.
A number isfdseif it's0; anumber istrueif it'snot O.

Mogt things you evduate in Perl return some vaue (such as anumber from an arithmetic expresson or an array
returned from a subroutine), so you can use most thingsin Perl in conditiond tests. Sometimes you may get an
undefined value, for example, if you try to add anumber to a variable that has not been assigned avaue. Things
might then fail to work as expected. For instance, the following:

use strict;

use war ni ngs;

ny $a;

ny $b;

$b = $a + 2;

produces the warning outpuit:

Use of uninitialized value in addition (+) at - line 5.

Y ou can test for defined and undefined values with the Perl function defined.
A.12.2 Logical Operators
There arefour logicd operators:

notandorxor

not turnstrue valuesinto false and fase valuesinto true. Itsuseis best illustrated in code:
i f(not $done) {...}

This executes the code only if $doneisfase.

and isabinary operator that returnstrueif both its operands are true. If one or both of the operands arefase, the

operator returnsfase
1 and 1 returns true
'a' and "' returns false

and O returns fal se

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

A.13 Binding Operators

Binding operators are used for pattern matching, substitution, and tranditeration on strings. They are used with regular
expressionsthat specify the patterns:
' ACGTACGTACGTACGT" =~ / CTA/

The pattern isthe string CTA, enclosed by forward dashes. The string binding operator is=~; it tellsthe program
which string to search, returning trueif the pattern gppearsin the string.

I~ isanother string binding operator; it returnstrueif the pattern isn't in the string:
' ACGTACGTACGTACGT' !~ / CTA/

Thisisequivaent to:
not ' ACGTACGTACGTACGI" =~ /CTA/

Y ou can substitute one pattern for another using the string binding operator. In the next example, Sthing/nine/ isthe
subdtitution command, which subtitutes the first occurrence of thine with the string nine:

$poor_richard = "A stitch in time saves thine.';
$poor _richard =~ s/thine/ninel;

print $poor_richard;

This produces the output:
A stitch in tine saves nine.

Findly, thetranditeration (or trandate) operator tr substitutes charactersin astring. It has severa uses, but thetwo
uses |'ve covered arefirdt, to change bases to their complements A —T,C —G,G —C,and T — A:

$DNA = ' ACGITTAA' ;

$DNA =~ tr/ ACGIT/ TGCA ;

This producesthe vaue:
TGCAAATT

Second, the tr operator counts the number of a particular character in astring, asin this example which countsthe
number of Gsin astring of DNA sequence data

$DNA = ' ACGITTAA' ;
$count = ($SDNA =~ tr/A//);

print $count;

This producesthe value 3; it shows that a pattern match can return a.count of the number of trandationsmadein a
string, which isthen assigned to the variable $count.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A.14 L oops

L oops repestedly execute the statementsin ablock until aconditional test changes value. There are severd forms of
loopsin Perl:
whi | e(CONDI TI ON) { BLOCK}

unti | (CONDI TI ON) { BLOCK}
for (I NI TI ALI ZATI ON ; CONDI TION ; RE-1 NI TIALI ZATION) {BLOCK}

foreach VAR (LIST) {BLOCK}
for VAR (LI ST) {BLOCK}

do {BLOCK} while (COND TION)
do {BLOCK} until (CONDI TION)

Thewhileloop first testsif the conditiond istrue; if S0, it executes the block and then returns to the conditiona to
repest the process. If false, it does nothing, and the loop isover:

$i =3

while (($i) {
print "$i\n";
$i--;

}

This produces the output:

3

2

1

Here's how the loop works. The scdar variable $i isfirgt initidized to 3 (thisisn't part of the loop). Theloop isthen
entered, and $i istested to seeif it has atrue (nonzero) vaue. It does, so the number 3is printed, and the decrement
operator is applied to $i, which reducesits value to 2. The block is now over, and the loop starts again with the
conditional test. It succeeds with the true value 2, which is printed and decremented. The loop restarts with atest of
$i, whichisnow thetruevaue 1; 1 isprinted and decremented to 0. Theloop startsagain; O istested to seeif it's
true, and it's not, so theloop is now finished.

L oops often follow the same pattern, in which avariableis set, and aloop is called, which tests the variables value
and then executes a block, which includes changing the vaue of the variable.

Thefor loop makesthis easy by including the varigble initidization and the variable change in the loop Satement. The
following isexactly equivalent to the preceding example and produces the same output:
for ($i =3 ; $i ; $i--) {
print "$i\n";
}

The foreach loop is a convenient way to iterate through the e ementsin an array. Here's an example:
@rray = ('one', 'tw', 'three');

foreach $el ement (@rray) {
print $el ement\n";

}

This printsthe output:
one

t wo

three

The foreach loop specifies ascaar variable $element to be set to each eement of the array. (Y ou may use any

s 1w ~RL A vemrvm A A st sl Al A FllA v Al v AR A T~ s A At AAL Ly ThA Arrea s A A b~ A s s

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A.15 I nput/Output

This section covers getting information into programs and receiving data back from them.

A.15.1 Input from Files

Perl has severa convenient waysto get information into aprogram. The non-CGlI programsin this book usualy get
input by opening and reading files. I've emphasized thisway of getting input because it behaves very much the same
way on any computer you may be using. Y ou've observed the open and close system calls and how to associate a
filehandle with afile when you open it, which then is used to read in the data. As an example:

open(FI LEHANDLE, "informationfile");
@ata _frominformationfile = <FI LEHANDLE>;

cl ose(FI LEHANDLE) ;

This code opensthefileinformationfile and associates the filehandle FILEHANDLE with it. Thefilehandleisthen
used within angle brackets to actualy read in the contents of the file and store the contents in the array
@data_from_informationfile. Findly, thefileis closed by referring once again to the opened filehandle.

A.15.2 Input from STDIN

Perl dlowsyou to read in any input that is automatically sent to your program viastandard input (STDIN). STDIN is
afilenandle that by default isaways open. Y our program may be expecting some input that way. For instance, on a
Mac, you can drag and drop afile icon onto the Perl applet for your program to make the file's contents appear in
STDIN. On Unix systems, you can pipe the output of some other program into the STDIN of your program with
shdll commands such as.

someprog | ny_perl _program

Y ou can a'so pipe the contents of afileinto your program with:
cat file | my_perl _program

or with;
ny_perl _program< file.

Y our program can then read in the data (from program or file) that comesas STDIN just asif it came from afile that
you've opened.

@lata_fromstdin = <STDI N>;

A.15.3 Input from Files Named on the Command Line

Y ou can name your input files on the command line. <> is shorthand for <KARGV>. The ARGV filehandle treats the
aray @ARGV asalig of filenames and returns the contents of al thosefiles, onelinea atime. Perl placesdl
command-line argumentsinto the array @ARGV . Some of these may be specid flags, which should be read and
removed from @ARGV if there will aso be data files named. Perl assumesthat anything in @ARGV refersto an
input filename when it reaches a< > command. The contents of thefile or files are then available to the program using
the angle brackets without afilehandle, like so:

@lata_fromfiles = <>;

For example, on Microsoft, Unix, or on the Mac OS X, you specify input files at the command line, like so:
% my_programfilel file2 file3

A.15.4 Output Commands

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A.16 Regular Expressions

Regular expressons are, in effect, an extralanguage that livesinsde the Perl language. In Perl, they have quitealot of
features. Fird, I'll summarize how regular expressonswork in Perl; then, I'll present some of their many features.

A.16.1 Overview

Regular expressions describe patternsin strings. The pattern described by asingle regular expression may match
meany different srings.

Regular expressions are used in pattern matching, that is, when you look to seeif a certain pattern existsin astring.
They can dso change strings, as with the §/// operator that substitutes the pattern, if found, for a replacement.
Additionaly, they are used in thetr function that can tranditerate several charactersinto replacement characters
throughout a string. Regular expressions are case-sengitive, unless explicitly told otherwise.

The smplest pattern match isastring that matchesitsdf. For instance, to seeif the pattern 'abc’ appearsin the string
‘abcdefghijklmnopgrstuvwxyz', write the following in Perl:

$al phabet = 'abcdef ghij kl mopqgr st uvwxyz' ;
i f($al phabet =~ /abc/) {

print $&
}

The =~ operator binds a pattern match to astring. /abc/ is the pattern abc, enclosed in forward dashesto indicate
that it's a regular-expression pattern. $& is set to the matched pattern, if any. In this case, the match succeeds, since
‘abc’ appearsin the string $al phabet, and the code just given prints out abc.

Regular expressions are made from two kinds of characters. Many characters, such as'a or 'Z', match themselves.
Metacharacters have a special meaning in the regular-expression language. For instance, parentheses are used to
group other characters and don't match themsalves. If you want to match a metacharacter such as(in astring, you
have to precede it with the backd ash metacharacter \(in the pattern.

There are three basic ideas behind regular expressions. Thefirgt is concatenation: two items next to each other ina
regul ar-expression pattern (that's the string between the forward dashesin the examples) must match two items next
to each other in the string being matched (the $al phabet in the examples). So, to match 'abc’ followed by 'def’,
concatenate them in the regular expression:

$al phabet = ' abcdef ghij kl mopqgr st uvwxyz' ;
i f($al phabet =~ /abcdef/) {
print $&;

}

Thisprints
abcdef

The second mgjor ideais dternation. Items separated by the | metacharacter match any one of theitems. For
example, thefallowing:

$al phabet = 'abcdef ghij kl mopqgr st uvwxyz' ;
i f($al phabet =~ /a(blc|d)c/) {
print $&;

}

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A.17 Scalar and List Context

Every operation in Perl isevaduated in either scalar or list context. Many operators behave differently depending on
the context they arein, returning alist in list context and ascalar in scaar context.

The smplest example of scdar and list contextsis the assgnment statement. If the left Side (the variable being
assigned avaue) isascdar variaole, the right Sde (the values being assigned) are evauated in scdar context. Inthe
following examples, theright Sdeisan array @array of two dements. When theleft Sdeisascaar variable, it causes
@array to be evaluated in scalar context. In scalar context, an array returns the number of eementsin an array:
@rray = ('one', 'two');

$a = @irray;

print $a;

Thisprints
2

If you put parentheses around the $a, you make it alist with one dement, which causes @array to beevaluated in list
context:

@rray = ('one', 'two');

($a) = @rray;

print $a;

Thisprints
one

Notice that when assigning to alig, if there are not enough variablesfor al the values, the extravalues are smply
discarded. To capture all the variables, you'd do this:

@rray = ('one', 'two');

(%$a, $b) = @rray;

print "$a $b";

Thisprints
one two

Smilarly, if you have too many variables on the |&ft for the number of right variables, the extravariables are assgned
the undefined va ue undef.

When reading about Perl functions and operations, notice what the documentation hasto say about scalar and list
context. Very often, if your program is behaving strangely, it's because it is evauating in adifferent context than you
had thought.

Here are some genera guidelines on when to expect scdar or list context:

Y ou get list context from function cals (anything in the argument postion isevaluated in list context) and from
ligt assgnments.

Y ou get scaar context from string and number operators (arguments to such operatorsas. and + are
assumed to be scalars); from boolean tests such asthe conditional of anif () statement or the argumentsto
the ll lodica onerator: and from <A ar a9 anment

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A.18 Subroutines

Subroutines are defined by the keyword sub, followed by the name of the subroutine, followed by ablock enclosed
by curly braces containing the body of the subroutine. The following isasmple example.

sub a_subroutine {
print "I'min a subroutine\n"

}

In generd, you can cal subroutines using the name of the subroutine followed by a parenthesized list of arguments:
a_subroutine();

Arguments can be passed into subroutines asalist of scalars. If any arrays are given as arguments, their elementsare
interpolated into the list of scalars. The subroutine recelves all scadar vauesasalist in the specid varigble @ . This
exampleillugtrates a subroutine definition and the calling of the subroutine with some arguments:

sub concatenate_dna {
my($dnal, $dna2) = @;

ny($concat enat i on) ;
$concat enati on = "$dnal$dna2";

return $concat enation

}

print concatenate_dna(' AAA, 'CCC);

Thisprints
AAACGC

The arguments’AAA' and 'CGC' are passed into the subroutine as alist of scalars. Thefirst statement in the
subroutine's block:
ny($dnal, $dna2) = @;

assignsthislig, availablein the specia variable @ _, to the variables $dnal and $dna2.

The variables $dnal and $dna2 are declared as my variables to keep them local to the subrouting's block. In generd,
you declare dl variables as my variables; this can be enforced by adding the statement use dirict; near the beginning
of your program. However, it is possible to use globa variables that are not declared with my, which can be used
anywherein aprogram, including within subroutines.

The Statement:
my($concat enati on);

declares another variable for use by the subroutine.

After the satement:
$concat enati on = "$dnal$dna2"”;

performsthe work of the subroutine, the subroutine definesits vaue with the return statement:
return $concat enat i on;

The vaue returned from acall to a subroutine can be used however you wish; in thisexample, it isgiven asthe
argument to the print function.

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

A.19 M odules and Packages

Chapter 1 summarizes the basic concepts of namespaces, packages, and modules.

A namespace is atable containing the names and values of variables and subroutines. Namespaces are excdl lent
waysto protect one part of your code from unintentionally using the same variable or subroutine name as appearsin
another part of your code, causing a namespace collision and often leading to incorrect (but hard to identify) program
behavior.

By default, a Perl program uses the namespace caled main.

The package declaration enables you to declare and use different namespaces for different parts of your program.
For instance, to declare anew namespace caled Outer, use the following statement:
package Quter;

Package declarations usually occur at or near thetop of afile and are in effect throughout the file, but they can
appear severd timeswithin afile, causing the active namespace to switch each time they are called.

When afile has one package declaration at the top of the file and it's named with the package name followed by the
.pm suffix (e.g, Outer.pm), thefileis called a Perl module. (The module also needsto end with the statement "1;" to
load correctly when called.)

The code for aPerl module can be used in aPerl program by referencing the file defining the module with ause
gatement, asin thefollowing example:
use Quter;

The Perl interpreter will then try to find afile called Outer.pm.

Chapter 1 givesthe basic details on how to manage modules so that the Perl interpreter can find them.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

A.20 Object-Oriented Programming

Object-oriented Perl programming isintroduced in Chapter 3 and Chapter 4, and used in dl the remaining chapters
of the book.

There are three main concepts:

A classisaPerl module with a package declaration. The name of the classis the same as the name of the
package; the module file also has the same name but with ".pm" (for Perl module) appended.

An object isareference to acollection of dataused by a Perl class, usualy but not necessarily, implemented
asahash. An object is marked with the name of itsclassusing bless.

A method isasubroutinein the class.

Arrow notation -> isused in aspecia way in object-oriented Perl code and has an effect on what arguments are
passed to the class methods.

Y ou use aclassin your code by saying, for example:
use Coodcl ass;

Y ou create an object by caling a constructor method in the class, which isusudly (but not necessarily) called new,
for example:
$goodobj ect = Goodcl ass->new(paraneterl => 1, paraneter2 => 2);

Note that arguments are usudly (but not necessarily) specified using the hash notation key => value, and therefore
can begivenin any order.

Y ou cal other methodsin the class by invoking them from a class object. For example you call the method stuff in
class Goodclass on a Goodclass object $goodobject, with argument type initialized to the value 'good’, and saveits
output in the array @goodstuft, like so:

@oodst uff = $goodobj ect - >stuff (type => 'good');

The arrow notation causes the called method to insert an additiona argument. (In the examplesjust shown, the
methods are the subroutines new and Stuff).

The additional argument is the classinformation that appearsto the left of the arrow. So, in these examples, the
method new hasthe argument list:
(' Goodcl ass', paraneterl=1, paraneter2=2)

The method stuff hasthe argument list:
($goodobj ect, type='good')

The details of how arguments are passed to methods are important to know only if you are writing aclass, not if you
areusing one. If you smply use aclass, you only have to know how to call the class methods using the arrow

http://www.cpan.org/default.htm
http://www.CPAN.org

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

A.21 Built-in Functions

This document is created with the unregistered version of CHM2PDF Pilot

Perl has many built-in functions. Table A-6 isapartid list with short descriptions.

Table A-6. Perl built-in functions

Function

absVALUE

aan2y, X

chdir EXPR

chmod MODE LIST

chomp (VARIABLE or LIST)

chop (VARIABLE or LIST)

chown UID, GID, LIST

close FILEHANDLE

closedir DIRHANDLE

cosEXPR

dbmclose HASH

SUmmary

Return the absolute value of its numeric argument

Return the principa vaue of the arc tangent of Y/X from
-?1t07?

Change the working directory to EXPR (or home
directory by default)

Changethefile permissonsof the LIST of filesto
MODE

Remove ending newline from string(s), if present

Remove ending character from string(s)

Change owner and group of LIST of filesto numeric
UID and GID

Closethefile, socket, or pipe associated with
FILEHANDLE

Close the directory associated with DIRHANDLE

Return the cosine of the radian number EXPR

Break the binding between aDBM file and ahash

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =
Appendix B. Installing Perl

Perl isapopular programming language that is extensively used in areas such as bioinformatics and web
programming. It's become popular with biologists becauseit is so well suited to severd bioinformaticstasks. This
gppendix is geared to those who are attempting the language for the first time.

Perl isaso an gpplication and isavailable (at no cost) to run on al operating systems found in the average biology lab
(Unix and Linux, Macintosh, Windows, VMS, and more). The Perl application on your computer takes a Perl
language program (such as one of the programsin this book), trandates it into instructions the computer can
understand, and runs (or executes) it.

Theword Perl, then, refers both to the language in which you write programs and to the application on your
computer that runs those programs. Y ou can dwaystell from context which of these two meaningsis being used.

Every computer language such as Perl needsto have atrandator gpplication (an interpreter or compiler) that can turn
programs into instructions the computer can actualy run. The Perl gpplication is often referred to asthe Perl
interpreter, and it includes a Perl compiler aswell. Y ou will aso see Perl programs referred to as Perl scripts or Pexl
code.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

B.1 Installing Perl on Your Computer

Here arethe basic stepsfor ingtaling Perl on your computer:
1.

Check to seeif Perl isdready ingtdled; if so, check the version.

Get Internet access and go to the Perl home page at http://Awww.perl.com.

Go to the Downloads page and determine which Perl distribution to download.

Download the Perl digtribution.

Ingtal the distribution on your computer.

B.1.1 Perl May Already Be I nstalled

Many computers—especialy Unix and Linux computers—come with Perl dready ingtaled. (Note that Unix and
Linux are essentidly the samething, asfar asthe operating system is concerned; Linux isaclone, or functiona copy,
of aUnix system.) So, first check to seeif Perl isaready there. On Unix and Linux, type the following at a command
prompt:

$ perl -v

If Perl isdready ingtdled, you'll see amessage something likethis:
This is perl, v5.8.0 built for i686-1inux

Copyri ght 1987-2002, Larry \al

Perl may be copied only under the terns of either the Artistic License or the
GNU General Public License, which nmay be found in the Perl 5 source kit.

Conpl et e docunmentation for Perl, including FAQ Ilists, should be found on
this systemusing 'man perl' or 'perldoc perl'. |f you have access to the

Internet, point your browser at http://ww.perl.com, the Perl Home Page.

If Perl isn't ingaled, you'll get amessage something likethis
perl: conmmand not found

If you're on ashared Unix system, a auniversity or business, check with the syslem adminigtrator if thisfails, because
athough Perl may beingdled, your environment may not be set to find it. (Or, the system administrator may say,
"You need Perl? Okay, I'll ingdl it for you!")

On Windows or Macintosh, look at the program menus, or use the find program to search for perl. You can dso try
typing perl -v a an MS-DOS command window or at a shell window on the Mac OS X. (Note that the Mac OS X
iIsaUnix system!)

http://www.perl.com/default.htm
http://www.perl.com
http://www.perl.com/,

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

B.2 Versons of Perl

Perl, likedmost al popular software, has gone through much growth and change over the course of its 15-yeer life.
Theauthors, Larry Wall and alarge group of cohorts, publish new versions periodicaly. These new versons have
been carefully designed to support most programs written under old versions, but occasionally some mgor new
features are added that smply won't work with older versions of Perl.

This book assumes you have Perl Verson 5 or higher indaled. It'slikely that if you have Perl dready instaled on
your computer, it's Perl 5. But it's best to check. On aUnix or Linux system, or from an MS-DOS or Mac OS X
command window, the perl -v command just shown displays the verson number, in my case Verson 5.8.0. The
number 5.8.0is"bigger” than 5, so I'm okay. If you get asmaller number (very likely 4.036), you'll havetoingal a
recent version of Perl to enable the mgority of programsin this book to run as shown.

What about future versons? Perl isaways evolving, and Perl Version 6 is on the horizon. Will the code in this book
il work in Perl 6? The answer isyes. Although Perl 6 is going to add some new thingsto the language, it should
have no trouble with the Perl 5 code in this book.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

B.3 Internet Access

Toingall Perl, you will need to download it from the Internet, as shown in the next few pages.

If you don't have Internet access, you can try taking your computer to afriend who does have such access, and
connecting long enough to ingtdl Perl. Y ou can adso use aZip drive or burn aCD from afriend's computer to bring
the Perl software to your computer. There are also commercia shrink-wrapped CDs of Perl available from severa
sources (ask a your loca software store), and several books include CDswith Perl.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

B.4 Downloading

Following are some directions for getting Perl to work on your Unix or Linux, Macintosh, and Windows computers.
(Itisaso available for severd other less common operating systems from the Perl web site))

Thereisone web stethat serves asacentra jumping off point for al things Perl: http:/Aww.perl.com. Thisweb
page has a Downloads clickable button that guides you to everything you need to ingal Perl on your computer.

The more specific directions that follow are up-to-date as of thiswriting, but you should be aware that the web pages
they refer to may change their design. So, basically, go to http:/Amww.perl.com, and look for the Downloads link to
click on. The system should tell you everything you need to know after that. There will beaHELP link and other
helpful links besides. So even if theinformation in this section becomes outdated, you will certainly be ableto visit the
main Perl web ste and find al you need to ingtdl Perl.

Downloading and ingtdling Perl isusudly quite easy; in fact, the mgjority of thetimeit's perfectly painless, but
sometimes you may haveto put some effort into getting it to work. If you're new at programming, and you run into
difficulties, the best thing to do isto ask for help from someone who is aprofessona computer programmer and/or
adminigtrator, teacher, or someonein the lab who dready programsin Perl. But the chances are that you won't need
any help: keep reading!

B.4.1 Binary Versus Source Code

One choice you will find when downloading is the choice between binary or source code distributions of Perl. The
chances are very good that abinary verson will be available for your computer. Get that if it's availablefor your
particular system.

Recal that abinary (or executable or compiled program) isaprogram that has been trandated into machine language
and isready to run. Source codeis aprogram written in alanguage such as C or Perl, which can then be compiled or
interpreted to become abinary. The Perl gpplication is actudly written in the C programming language, o it'saso
possible to get the C source code for the Perl application and compileit to create the Perl application binary.

The best choicefor ingtaling Perl on your computer isusudly to get an dready made binary version of the program,
because nothing else needs to be done. However, if no binary isavailable, or if you want to control the various
options of your Perl ingtdlation, you can get the source code for Perl, which isitsdf written in the C programming
language. Y ou then compileit using a C compiler. But | repeat: seeif you can find abinary for your particular
computer operating system; compiling from source code is more complicated for beginners! Details are available at
the Perl web site.

B.4.2 Perl for Unix and Linux

Recall that Unix and Linux are essentialy the same kind of operating system—Linux isaclone of Unix. Both Unix
and Linux comein severa variants offered by various companies.

Perl was origindly developed on Unix and for quite some time now it has come dready instaled on most such
systems. Open awindow and type perl -v. If you get verson information, Perl isthere.

http://www.perl.com/default.htm
http://www.perl.com/default.htm
http://www.perl.com/default.htm
http://www.perl.com/default.htm
http://www.macperl.com/default.htm
http://www.perl.com/default.htm
http://www.alladinsys.com/default.htm
http://www.activestate.com/ActivePerl/default.htm
http://www.perl.com/default.htm
http://www.perl.com
http://www.perl.com
http://www.perl.com
http://www.perl.com
http://www.macperl.com
http://www.perl.com
http://www.alladinsys.com
http://www.activestate.com/ActivePerl/
http://www.perl.com

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [«rrevious]nex

This document is created with the unregistered version of CHM2PDF Pilot

B.5 How to Run Perl Programs

The details of how to run Perl vary depending on the operating system of your computer. The ingtructions that come
with the version of Perl you ingtal on your computer contain al you need to know. I'll just give ashort summary here
that will point you in theright direction.

Thereisapart of the Perl documentation caled perlrun. You canfind it at
http:/Aww.perl .com/pub/doc/manua/html/pod/perlrun.hitml . 1t gives dl the options of running Perl, especidly on Unix
and Linux; it's complete but not for the beginner.

B.5.1 Running Perl Programson Unix or Linux

On Unix or Linux, you usualy run Perl programsfrom the command line. Y ou can run aPerl programin afilecalled
this_program by typing:

perl this_program

if you'rein the same directory asthe program. If you're not in the same directory, you may haveto give the pathname
of the program:

perl /usr/local/bin/this_program

Usudly, you set thefirgt line of this_program to have the correct pathname for Perl on your system, since different
machines may haveingaled Perl in different directories. On my compuiter, | usethefollowing asthefirg line of my
Perl programs:

#!/usr/ bin/ perl

Y ou can type which per!| to find the pathname where Perl isingtaled on your system.

Y ou aso usualy make the program executable, using the chmod program:
chnod 755 this_program

If you've set thefirdt line correctly and used chmod, you can just type the name of the Perl programto runiit. So, if
you're in the same directory asthe program, you can type ./this_program or, if the programisin adirectory that's
included in your $PATH or $path variable, you can type this_program.[1]

[1] $PATH isthe variable used for the shells sh, bash, and ksh; $path isthe variable used for csh, tcsh, and so on.

If your Perl program won't run, the error messages you get from the shell in the command window may be alittle
confusing. For ingtance, the bash shell on my Linux system givesthe error message:
bash: ./ny_program No such file or directory

intwo cases. if thereredly isno program called my_program in the current directory, or if thefirst line of
my_program hasincorrectly given the location of Perl. So watch for that, especialy when running programs from
CPAN that may have different pathnames for Perl embedded in their first lines. Also, if you type my_program, you
may get the error message:

bash: my_program comrand not found

which meansthat the operating system can't find the program. But it'sright therein your directory! The problemis
probably that your $PATH or $path variable doesn't include the current directory, so that the systemisn't even
looking in the current directory for the program. In this case, change the SPATH or $path variable (depending on
which shdl you'reusing); or just type ./my program instead of my program.

http://www.perl.com/pub/doc/manual/html/pod/perlrun.html
http://www.perl.com/pub/doc/manual/html/pod/perlrun.html

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] [rrevious L |

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB] =

B.6 Finding Help

Make sure you have any available documentation. If you install Perl asoutlined earlier, thisis already done as part of
the generd Perl ingtalation, and the ingtructions that come with your Perl distribution will explain how to get at the
documentation on your system. Thereis aso excdlent online Internet documentation, which can be found at
http:/Aww.perl .com.

First, point your web browser at the main Perl web site, bookmark it, and ook around alittle, especidly &t the
available documentation. Thisisan essentia resource. Also, point your browser at http:/Aww.nchi.nlm.nih.gov (the
Nationd Center for Biotechnology Information) and http://Aww.ebi.ac.uk/ (the European Bioinformatics Ingtitute) for
two of the biggest government-sponsored bioinformatics resources. These are among the most important web sites
for Perl and bioinformatics.

Also very useful isthe standard book Programming Perl (now initsthird edition). Y ou can do fine with the (free)
online documentation, but if you end up doing alot of Perl programming, Programming Perl (and perhagpsafew
others) will probably end up on your bookshelf.

Mogt languages have a standard document set that includes the whole story about the language definition and use. In
Perl, thisisincluded with the program as the on-line manud. Although programming manuals often suffer from poor
writing, it is best to be prepared to dig into them. A well-honed ability to skim isagreat asset. The Perl manua isn't
bad; its main problem, that it shareswith most manuals, isthat dl the detallsare in there, so it can be abit
overwhelming at first. However, the Perl documentation does a decent job of hel ping the beginner navigate, by means
of tutoriad documents.

[TeamLiB]

http://www.perl.com/default.htm
http://www.ncbi.nlm.nih.gov/default.htm
http://www.ebi.ac.uk/default.htm
http://www.perl.com
http://www.ncbi.nlm.nih.gov
http://www.ebi.ac.uk/

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from distribution channels.
Digtinctive covers complement our distinctive gpproach to technica topics, breathing persondity and lifeinto
potentidly dry subjects.

The animal on the cover of Magtering Perl for BioinformaticsisaNorth American bullfrog (Rana catesbeiana). Itis
native to the centra and eastern United States, as well as southern portions of Canada. However, this bullfrog has
snce been introduced asfar away from its native habitat as Asa, Europe, and Hawaii.

The North American bullfrog isthe largest true frog in North America and can weigh over a pound. It can grow up to
eght inchesin length, athough the norm isfour to five inches. The gender of the bullfrog is ascertained by comparing
the Sze of the external ear (the tympanum) relative to the Sze of the eye.

Bullfrogs are predators and also are cannibdistic. Their rolein the environment isto control the population of insect
pests aswell as snakes and mice. In fact, the zed of the North American bullfrog threastens to drive other frog species
to extinction.

The generic name (rana) comes from the Latin for frog, while the species name (catesbeiana) honors an English
naturalist. In the 18th century, Mark Catesby (1683-1749) produced the authoritative and exhaustive record of the
floraand faunafound in the New World. Wedthy patronsin England eagerly recelved Catesby's regular shipments of
gpecimens, including plants, birds, reptiles, insects, and frogs.

Mary Anne Weeks Mayo was the production editor and copyeditor, and Marlowe Shaeffer was the proofreader, for
Magtering Perl for Bioinformatics. Jane Ellin and Colleen Gorman provided quality control. Marlowe Shaeffer, Mary
Agner, and James Quill provided production assistance. John Bickelhaupt wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover imageisa
19th-century engraving from the Dover Pictoria Archive. Emma Colby produced the cover layout with QuarkX Press
4.1 usng Adobe's ITC Garamond font.

David Futato designed theinterior layout. This book was converted by Andrew Savikasto FrameMaker 5.5.6 with
aformat conversion tool created by Erik Ray, Jason Mclntosh, Nell Walls, and Mike Serrathat uses Perl and XML
technologies. Thetext font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. Thetip and warning icons
were drawn by Christopher Bing. This colophon was written by Reg Aubry.

The online edition of thisbook was created by the Safari production group (John Chodacki, Becki Maisch, and
Madeleine Newell) using aset of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray,
Benn Sdter, John Chodacki, and Jeff Liggett.

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL][A][B] [C] [D] [E] [F] [G] [H] [1] [J [K] [L] [M][N] [O] [P [Q] [RI[S] [T] [U] [V][W][X]

& (ampersand)
& & (logica and) operator
(bitwise and) operator
< and > (angle brackets)
> (arrow operator)
>> right shift operator
<> lineinput operator
<< |eft shift operator
* (asterisk) quantifier
@ (at Sgn)
@INC array
-- (autodecrement operator)
\ (backdash)
escaping metacharacters
metasymbols, usein
\@ (backdash-at)
! (bang)
I' (logicd negation) operator
I~ (binding) operator
(shebang) notation
I~ (binding operators)
" (caret
metacharacter in regular expressons
/i (case-ingengtive) matching
I/ (colon-dashes)
{} (curly braces) 2nd
{} (curly braces) quantifier
{} (curly braces)
dereferencing and
-w flag
$flag variable

$ (dollar sign)
$ vaiables

metacharacter
. (dot)
character wildcard
current directory)
string operator
:: (double colons) in module names
= (equa sign)
=~ (pattern binding) operator
=> (syntactic sugar symbol)
/ (forward dash)
() (parentheses)
%ogenetic_code hash
% (percent Sgn)
++ (autoincrement) operator
+ (plussign) quantifier
? (question mark), in quantifiers
" (quotes, double) in strings
' (quotes, Sngle) in gtrings
; (semicolon), ending Perl satements
(shebang notation)
[] (square brackets)
“dbh

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

abdtraction
accessor methods
Gene2.pm
dgorithms [See dso string dgorithms]
border conditionsand
datastructures and
references
dternation
and operator
bitwise and (&) operator
logicd and
contral flow, using for
angle operator
anonymous arrays
anonymous data
anonymous hashes
anonymous referents
gpproximate string matching

arguments
arithmetic operators

arays 2nd

@ARGV

anonymous arays

of arrays

eements, specifying

meatrices

referencesto

Sparse arrays

as subroutine arguments

two-dimensiond arrays
arrow notation
arrow operator (\>)
assgnment

scadar and ligt context
assgnment operators
asgn (@)
attributes 2nd

graphics output, storing in

key/vadue pars
attributes (databases)
autoincrement and autodecrement operators
AUTOLOAD subroutine

accessors

arguments

FilelO.pm

get_and set

mutators

speeding up the code
writing methodsusing

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

backdash-at (\@)
base 16 (hexadecima) numbers
base 8 (octal) numbers
base class
bases, changing to reverse complements
binary (base 2) numbers
bind variables
binding operators
|~
bioinformatics
Bioper 2nd
bptutorid .pl
documentation 2nd

object-oriented style
objects

Bioperl modules 2nd
bitmaps
bitwise operators

& (bitwise and)
blessfunction
blocks
body tags
border conditions
Boutdl, Thomas
bptutorid .pl
browsers
built-in functions, Perl

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL][A][B] [C] [D] [E] [F] [G] [H] [1] [J [K] [L] [M][N] [O] [P [Q] [RI[S] [T] [U] [V][W][X]

candidate keys
capturing in patterns
caret ()
Carp module 2nd
case-ingendtive matching
CERN
CGI (Common Gateway Interface) 2nd
CGl.pm 2nd
functions
wsing
programs
checking syntax
error logs
ingaling
teging
writing
scripts
webrebasel program
chaining, logicd operators
character classes
classdata
classinheritance 2nd
Class:Struct
classes 2nd
base class
documentation with POD
example of aPerl class
usng
client-server architecture
clone congtructor
close (sysem cal)
closures 2nd
CMYK
codon2aa subroutine
colon and forward dashes (://)
color tables
colorAllocate method
command-line
input files, naming on
interface to SQL
commands
interpretetion line
comments
Common Gateway Interface [See CGl]
complex (or imaginary) numbers
complex datastructures 2nd
dereferencing
hasheswith array vaues
printing
Comprehensive Perl Archive Network [See CPAN]
computer graphics [See graphics]
concatenating strings
conditiona statements
expressonsin loops
connect method

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL][A][B] [C] [D] [E] [F] [G] [H] [1] [J [K] [L] [M][N] [O] [P [Q] [RI[S] [T] [U] [V][W][X]

datacompression and graphicsfile formats
data redundancy
datastructures 2nd 3rd [Seealso complex data structures]
datatypes 2nd
Daa:Dumper module
databases 2nd 3rd [Seedso Perl DBD; Perl DBI; SQL]4th
adminigration
adding users
backups

reloading
create database command

create table command
desgn

drop command
insert command

ingdlation
popular versons
relationd databases
stored procedures
tab-ddimited input files
transactions
updates
DBD:MySQL
_doh
DBM filesand hashes
DBM Ss (database management systems)
SQL and
decimd numbers
declarative programming
decrementing variables
defined and undefined vaues
defined function
dereferencing
complex data structures
derived class
DESTROQY subroutine
diefunction
disconnect cal
do-until loops
do-whileloops
documentation, Perl operators (perlop)
dollar sign ($)
dot (.) string operator
double colons (:;) in module names
downloading Perl
DPl
drawvmap_jpg method
drawvmap_png method
drawvmap text method

drop command
dump command (databases)

dynamic progranming

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

edit distance
€lse gatements
dgf daements
em() function
amail
encgpsulaion 2nd
end form function
end html function
entity integrity
entity-relaionship modding
error messages

directingto STDERR
"exclusive-OR" operator (xor) 2nd
execute method
exponentia notation

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

fdse or true vaue, evaduating with conditionas
FASTA header
filetest operators
filehandles
output

FilelO.pm
AUTOLOAD method

congtructor method
read method
sat and locdtime functions
test program
write method
files
directing output to
graphicsformats 2nd
input from
named on command line
opening
first norma form
$flag variable
floating-point numbers
for loops
foreach loops

foregnkeys
format function

formeatting output using printf
forward dash (/)

fractions

E)

functiond dependencies
functions, built-in

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

garbage collection

gd graphicslibrary 2nd

GD.pm 2nd
color table manipulation
compdtible grephicsfileformats
inddling
Restrictionmap.pm, adding graphicsto
wsing

GD::Grgph module 2nd

gdl.pl program

gd2.pl program

Genepm
congtructor method
test program

Genel.pm

Gene2.pm
accessor and mutator methods

new method

test program
Gene3.pm
AUTOLOAD [See AUTOLOAD subroutine]
test program
genetic variability and string matching
Geneticcodepm
geL
get bionetfile method
get dbmfile method
get_graphic method
get_mode method
get_recognition_stesmethod 2nd
get_regular_expressons method 2nd
GIF (Graphic Interchange Format)
Gimp (GNU Image Manipulation Program)

globd varigbles
graphics
gpplying color
fileformats 2nd
data compression
GD competible
graphicsprimitives
graphs, creating
methods
requirementsfor
vector graphics
graphics data, soragein scaar
graphics output, storing in object attributes
greedy matching

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

hard references
heshes 2nd 3rd

%ogenetic_code
anonymous hashes

hash keys
referencesto
usein Perl asobjects
with array vaues
head tags
header fields
hexadecimal (base 16) numbers
higher dimensiond matrices
homereations
homol ogs database
homol ogs.getdata program
homologs.load program
homol ogs.tabs program
hostname
HTML (Hypertext Markup Language)
directives
tags
web page example
HTTP (Hypertext Transport Protocol)
hitp/
hypertext links
Hypertext Markup Language [See HTML]
Hypertext Transport Protocol [SeeHTTR|

[TeamLiB]

http://

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

if satements
ImageMagick and Image::Magick module
imaginary numbers
incrementing variables
indexing
scaar vauesin arays
inheritance 2nd
input
fromfiles
named on command line
STDIN (standard input)
insert command
dternativesto
instance of aclass
integers 2nd
Internet
Internet addresses
| P addresses
is methods

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

JPEG (Joint Photographic Experts Group) 2nd
outputting dataas

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

key/valuepars 2nd 3rd
keys
databases

primary keys 2nd

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

|eft shift operator (<<)

libraries

lineinput operator (<>)

Linux
compiling Perl from source
ingdling Perl binarieson
Perl programs, running on

list context

load utility (SQL)

locd varidbles

locdtimefunction

logica operators, using for control flow

|oops
[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

Macintosh, running Perl programs on
MacOS X, specifying input files on command line
mapgraphics attribute
meatrices
dynamic programming
higher dimensiond matrices
matrx
maxima (greedy) matching
memory management, cleaning up unused objects
metacharacters
metasymbols
methods 2nd
accessor methods
arrow notation and
AUTOLOAD and
congtructor methods
mutator methods
Rebase class
parse_rebase
minima matching
modules 2nd 3rd
advantages

Carp module
colonsin module names

CPAN modules
defining
exporting names
Geneticcodepm
storing

mutators 2nd
Gene2.pm

(11

my variables

MySQL 2nd

_mysdl

MySQL
multithreading
Perl DBD driver for

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

named filds
names, scalar variables
namespace collisons
namespaces
capitalizetion
new method
Genel class
Gene2.pm
normd forms
normdization
not operator
numbers

floating-point
asscdar values

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

object-oriented (OO) programming
object-oriented programming 2nd
objects 2nd
dearing from memory
hash data structures
indance of aclass
representation as hashes
octal (base 8) numbers
open sysem cdll
openingfiles
operators
aithmetic
assgnment
binding
bitwise
context and
filetest
logica
conditionasand
precedence of
ring
or operator
| (bitwise OR)
logicdl or
contral flow, using for
output
directingto STDOUT, STDERR andfiles
functionsfor
output, formatting with printf

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL][A][B] [C] [D] [E] [F] [G] [H] [1] [J [K] [L] [M][N] [O] [P [Q] [RI[S] [T] [U] [V][W][X]

package declaration
packages

palettes

paragraph tags
param() function
parent class

parse_methods
parse rebase method

parse rebase program
passing by reference
passing references to subroutines
pathnames on the Web
patterns (and regular expressions)
binding operators
metacharacters
metasymbols
modifiers
percent sign (%)
Perl
arays [Seearrays]
assgnment
built-in functions
command interpretation
comments
compiling from source
conditional statements
logica operationsand
documentation
downloading
finding help
hashes [See hashes)
Input/out
inddling
binary vs. source code
loops
object-oriented programming
operators [See operators)
regular expressons
running programs
scadar and ligt context
scdar vaues
satements
blocksand
subroutines
variables
salar
versons
Perl DBD (DataBase Dependent) modules
ingdling and configuring
Perl DBI (DataBase Independent) module 2nd
connect method
disconnect method
examples
execute method
ingaling and configuring

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A] [B] [C][D] [E] [F][G] [H] [1] [[K] [L] [M] [N][O] [PI [QI[RI[S] [T] [U] [V][W][X]
quantifiers
maximd and minimd
quotes
[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL][A][B] [C] [D] [E] [F] [G] [H] [1] [J [K] [L] [M][N] [O] [P [Q] [RI[S] [T] [U] [V][W][X]

raster images
rationd numbers

retios
read method
Rebase (Redtriction Enzyme Database)
Rebase dynamic web pages
Rebase.pm

attributes

methods

parse_rebase

Rebase object, creating

tesing
RebaseDB.pm

andyss

tegting program
recognition sites, magpping 2nd
ref function
references 2nd

to arrays

to hashes

passing to subroutines

to references

returning from subroutines

to subroutines

symboalic vs. hard

within blocks
referentid integrity
referents

anonymous referents
regular expressons
relationa databases [See databases]
relationd moddl
relations
repeating strings (X operator)
request
request method
response
Redtriction class

cregting

planning
regtriction enzymes
restriction maps

cregting

Redriction.pm
documentation

initidizing objects
Redtrictionmap.pm

graphics enhancements

JPEG output, adding

Redrictionmap class

tesing
returning references from subroutines
reverse complements, changing basesinto
RGB
right shift operator (>>)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[SYMBOL][A][B] [C] [D] [E] [F] [G] [H] [1] [J [K] [L] [M][N] [O] [P [Q] [RI[S] [T] [U] [V][W][X]

g/l (substitution) operator
scaar context
araysin
scdar vaues
assigning to arrays
assigning to scdar variables
numbers
grings 2nd [Seeaso strings]
scdar variables
assgning scda vauesto
scdars
storing graphics datain
scheme
scientific (exponentid) notation
scripts (CGl)
second norma form
select command

SegFilelO.pm

test program
Sequencel O module
Sequencel O.pm 2nd
=t

oftware reuse

Sparse arrays
Sprintf function
QL (Structured Query Language) 2nd 3rd [See also databases]
commands
create database
create table
drop
insert
load utility
queries
bind variables
select command
SQL2
SQL3
square brackets ([])
dat multipart_form function
dat function
Satements
datusline
STDERR filehandle
STDIN filehandle
STDOUT filehandle
stored procedures
gring adgorithms
grings
binding operators
capturing matched patternsin
formatting (sprintf function)
matching
genetic variahility and
operators
subgtituting charactersin (tr/// operator)

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

tab-ddimited input files
SOQL load utility and
tebles
cregting
popuiating
tags
testRebaseDB program
titletags
tr/// (tranditeration) operator
transactions
tranditeration (tr///) operator
true or false vaue, evaduating with conditionas
truecolor
tuples
two-dimensond arrays
two-dimensiona mairices

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

undefined vdues 2nd
uniqueidentifiers
Unix
compiling Perl from source
ingdling Perl binarieson
Perl programs, running on
pecifying input fileson command line
unless satements
update anomalies
URI::URL modules
URLSs (Uniform Resource Locators)
uselib directive 2nd
usedtrict
AUTOLOAD, bypassng with
use drict directive

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

vaidbles
selar
assgning scdar vauesto
testing and changing vauein loops
vector graphics

[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]
[SYMBOL] [A][B] [C] [D] [E] [FI[CG] [H] (1] [[K] [L] [M][N][O] [P] [QI [R] [S] [T] [U] [V] [W] [X]

warn function
warningsflag
Web
web browsers
web pages
building
directory locations
example
web programming
web servers
webrebasel
andyss
ingaling
whileloops
Windows
Perl programs, running on
Windows systems
specifying input fileson command line
World Wide Web [See Web]
writefunction
write method

FilelO.pm
[TeamLiB]

This document is created with the unregistered version of CHM2PDF Pilot

[TeamLiB]

[SYMBOL][A][B] [C] [D] [El [E][GI [H]I [1] [J [K] [L] [IMI[N]TO] [P [QI [RI[S] [T] [U] [V] [W] [X]
X operator

X string operator

XOr operator

[TeamLiB]

	Main Page
	Table of content
	Copyright
	Foreword
	Preface
	About This Book
	What You Need to Know to Use This Book
	Organization of This Book
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Part I: Object-Oriented Programming in Perl
	Chapter 1. Modular Programming with Perl
	1.1 What Is a Module?
	1.2 Why Perl Modules?
	1.2 Why Perl Modules?
	1.4 Packages
	1.5 Defining Modules
	1.6 Storing Modules
	1.7 Writing Your First Perl Module
	1.8 Using Modules
	1.9 CPAN Modules
	1.10 Exercises

	Chapter 2. Data Structures and String Algorithms
	2.1 Basic Perl Data Types
	2.2 References
	2.3 Matrices
	2.4 Complex Data Structures
	2.5 Printing Complex Data Structures
	2.6 Data Structures in Action
	2.7 Dynamic Programming
	2.8 Approximate String Matching
	2.9 Resources
	2.10 Exercises

	Chapter 3. Object-Oriented Programming in Perl
	3.1 What Is Object-Oriented Programming?
	3.2 Using Perl Classes (Without Writing Them)
	3.3 Objects, Methods, and Classes in Perl
	3.4 Arrow Notation (->)
	3.5 Gene1: An Example of a Perl Class
	3.6 Details of the Gene1 Class
	3.7 Gene2.pm: A Second Example of a Perl Class
	3.8 Gene3.pm: A Third Example of a Perl Class
	3.9 How AUTOLOAD Works
	3.10 Cleaning Up Unused Objects with DESTROY
	3.11 Gene.pm: A Fourth Example of a Perl Class
	3.12 How to Document a Perl Class with POD
	3.13 Additional Topics
	3.14 Resources
	3.15 Exercises

	Chapter 4. Sequence Formats and Inheritance
	4.1 Inheritance
	4.2 FileIO.pm: A Class to Read and Write Files
	4.3 SeqFileIO.pm: Sequence File Formats
	4.4 Resources
	4.5 Exercises

	Chapter 5. A Class for Restriction Enzymes
	5.1 Envisioning an Object
	5.2 Rebase.pm: A Class Module
	5.3 Restriction.pm: Finding Recognition Sites
	5.4 Drawing Restriction Maps
	5.5 Resources
	5.6 Exercises

	Part II: Perl and Bioinformatics
	Chapter 6. Perl and Relational Databases
	6.1 One Perl, Many Databases
	6.2 Popular Relational Databases
	6.3 Relational Database Definitions
	6.4 Structured Query Language
	6.5 Administering Your Database
	6.6 Relational Database Design
	6.7 Perl DBI and DBD Interface Modules
	6.8 A Rebase Database Implementation
	6.9 Additional Topics
	6.10 Resources
	6.11 Exercises

	Chapter 7. Perl and the Web
	7.1 How the Web Works
	7.2 Web Servers and Browsers
	7.3 The Common Gateway Interface
	7.4 Rebase: Building Dynamic Web Pages
	7.5 Exercises

	Chapter 8. Perl and Graphics
	8.1 Computer Graphics
	8.2 GD
	8.3 Adding GD Graphics to Restrictionmap.pm
	8.4 Making Graphs
	8.5 Resources
	8.6 Exercises

	Chapter 9. Introduction to Bioperl
	9.1 The Growth of Bioperl
	9.2 Installing Bioperl
	9.3 Testing Bioperl
	9.4 Bioperl Problems
	9.5 Overview of Objects
	9.6 bptutorial.pl
	9.7 bptutorial.pl: sequence_manipulation Demo
	9.8 Using Bioperl Modules

	Part III: Appendixes
	Appendix A. Perl Summary
	A.1 Command Interpretation
	A.2 Comments
	A.3 Scalar Values and Scalar Variables
	A.4 Assignment
	A.5 Statements and Blocks
	A.6 Arrays
	A.7 Hashes
	A.8 Complex Data Structures
	A.9 Operators
	A.10 Operator Precedence
	A.11 Basic Operators
	A.12 Conditionals and Logical Operators
	A.13 Binding Operators
	A.14 Loops
	A.15 Input/Output
	A.16 Regular Expressions
	A.17 Scalar and List Context
	A.18 Subroutines
	A.19 Modules and Packages
	A.20 Object-Oriented Programming
	A.21 Built-in Functions

	Appendix B. Installing Perl
	B.1 Installing Perl on Your Computer
	B.2 Versions of Perl
	B.3 Internet Access
	B.4 Downloading
	B.5 How to Run Perl Programs
	B.6 Finding Help

	Colophon
	Index
	Index SYMBOL
	Index A
	Index B
	Index C
	Index D
	Index E
	Index F
	Index G
	Index H
	Index I
	Index J
	Index K
	Index L
	Index M
	Index N
	Index O
	Index P
	Index Q
	Index R
	Index S
	Index T
	Index U
	Index V
	Index W
	Index X

